پخش بار بهينه در شبکه توزيع هوشمند مبتني بر قطع بهينه بار و بهبود شاخص پايداري ولتاژ
محورهای موضوعی : مهندسی برق و کامپیوترسهیل درفشی بیگوند 1 , حمدی عبدی 2 *
1 - دانشگاه رازی
2 - دانشگاه رازي
کلید واژه: پخش بار بهينه شاخص پايداري ولتاژ شبکه هوشمند قطع بار کنترل مستقيم بار ناپايداري ولتاژ,
چکیده مقاله :
شبکه هوشمند حاصل فعالشدن مصرفکنندگان در سيستم قدرت و ايفاي نقش آنها در زمينه برنامهريزي و بهرهبرداري سيستم قدرت است. زيرساختهاي ارتباطي، کنترلي و اندازهگيري به عنوان پل ارتباطي هوشمند، ارتباط دوسويهاي را بين مصرفکنندگان و شبکه قدرت برقرار نموده و زمينه را براي اجراي مؤثر برنامههاي پاسخگويي بار همانند کنترل مستقيم بار فراهم ميکنند. در اين مقاله پخش بار بهينه به عنوان يک مبحث مطالعاتي مهم در سيستمهاي قدرت مبتني بر کنترل مستقيم بار و يک شاخص پايداري ولتاژ جديد ارائه شده است. سادگي انجام محاسبات، وابستگي به ولتاژ، عدم وابستگي مستقيم به بار و همبندي شبکه و نيز عدم نياز به کاهش شبکه به فرم دو شين معادل، شاخص پايداري ولتاژ پيشنهادي را براي محاسبات بيدرنگ با وجود تغيير الگوي بار مناسب ساخته است. در روش ارائهشده، قطع بهينه بار در تعدادي از بارهاي انتخابي شبکه با هدف بهبود شاخص پايداري ولتاژ ضعيفترين شين سيستم مورد بررسي قرار گرفته است. روش پيشنهادي روي يک شبکه توزيع شعاعي 69شينه به عنوان يک شبکه هوشمند جهت تشخيص مؤثربودن آن اعمال شده است.
Smart grid is the result of enabling consumers in the power system in order to play an effective role in the power system planning and operation processes. The communication, control, and measurement infrastructures create a two-way intelligent communication between users and the network which facilitates the effective implementation of demand response programs (DRPs) such as the direct load control (DLC). In this paper, optimal power flow as an important research topic in the power systems is presented based on DLC and a new voltage stability index. Simple calculations, voltage dependence, indirect dependence to the load and network topology, and also not reducing the network into a two-bus equivalent model, have made the proposed voltage stability index more applicable to real-time calculations considering the load pattern changes. In the proposed method, the optimal load curtailment in some selected loads of the network, with the aim of improving the voltage stability index of the weakest bus is evaluated. Finally, in order to show the effectiveness of the suggested method, it is applied to a 69-bus radial distribution network as an intelligent system.
[1] L. Gang, D. Debraj, and S. Wen-Zhan, "Smart grid lab: a laboratory-based smart grid test bed," in Proc. 1st IEEE Int. Conf. Smart Grid Commun., pp. 143-148, Gaithersburg, USA, Oct. 2010.
[2] F. Rahimi and A. Ipakchi, "Demand response as a market resource under the smart grid paradigm," IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 82-88, Jun. 2010.
[3] U. S. Department of Energy, Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them, Tech. Rep. to United States Congr., Feb. 2006. http://eetd.lbl.gov.
[4] H. A. Aalami, M. Parsa Moghaddam, and G. R. Yousefi, "Demand response modeling considering interruptible/curtailable loads and capacity market programs," Appl. Energy, vol. 87, no. 1, pp. 243-250, Jan. 2010.
[5] North American Electric Reliability Corporation Reliability Assessment Subcommittee, Demand Response Discussion for the 2007 Long-Term Reliability Assessment, Tech. Rep., Feb. 2007.
[6] U. S. Department of Energy, Assessment of Demand Response and Advanced Metering, Tech. Rep., Aug. 2006.
[7] M. H. Albadi and E. F. El-Saadany, "A summary of demand response in electricity markets," Electr. Power Syst. Res., vol. 78, no. 11, pp. 1989-1996, Nov. 2008.
[8] G. Wikler, Auto-DR: Smart Integration of Supply and Demand for Rapid Grid Response, A White Paper for Global Energy Partners, LLC, Mar. 2010, http://www.gepllc.com/AutoDRGridResponse.pdf.
[9] E. Koch and T. Samad, Demand Response and Energy Efficiency for the Smart Grid, Stanford University, May 2011, http://www.stanford.edu/class/ee392n/Lectures/EE392nLecture8Hon.pdf.
[10] J. R. Stitt, "Implementation of a large-scale direct load control system-some critical factors," IEEE Trans. Power Appar. Syst., vol. PAS-104, no. 7, pp. 1663-1669, Jul. 1985.
[11] S. Chanda and A. De, "A multi-objective solution algorithm for optimum utilization of smart grid infrastructure towards social welfare," Int. J. Electr. Power Energy Syst., vol. 58, pp. 307-318, Jun. 2014.
[12] S. Lin and J. Chen, "Distributed optimal power flow for smart grid transmission system with renewable energy sources," Energy, vol. 56, pp. 184-192, Jul. 2013.
[13] Y. Levron, J. M. Guerrero, and Y. Beck, "Optimal power flow in microgrids with energy storage," IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3226-3234, Aug. 2013.
[14] L. R. Araujo, D. R. R. Penido, and F. A. Vieira, "A multiphase optimal power flow algorithm for unbalanced distribution systems," Int. J. Electr. Power Energy Syst., vol. 53, pp. 632-642, Dec. 2013.
[15] T. Erseghe and S. Tomasin, "Power flow optimization for smart microgrids by SDP relaxation on linear networks," IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 751-762, Jun. 2013.
[16] S. Bruno, S. Lamonaca, G. Rotondo, U. Stecchi, and M. L. Scala, "Unbalanced three-phase optimal power flow for smart grids," IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4504-4513, Oct. 2011.
[17] S. Paudyal, C. A. Canizares, and K. Bhattacharya, "Optimal operation of distribution feeders in smart grids," IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4495-4513, Oct. 2011.
[18] E. DallAnese, H. Zhu, and G. B. Giannakis, "Distributed optimal power flow for smart microgrids," IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1464-1475, Sep. 2013.
[19] C. E. Murillo-Sanchez, R. D. Zimmerman, C. L. Anderson, and R. J. Thomas, "A stochastic, contingency-based security-constrained optimal power flow for the procurement of energy and distributed reserve," Decis. Support Syst., vol. 56, pp. 1-10, Dec. 2013.
[20] A. Mehrtash, P. Wang, and L. Goel, "Reliability evaluation of restructured power systems using a novel optimal power-flow-based approach," IET Gener. Transm. Distrib., vol. 7, no. 2, pp. 192-199, Feb. 2013.
[21] P. Kundur, "Definition and classification of power system stability," IEEE Trans. Power Syst., vol. 19, no. 2, pp. 1387-1401, May 2004.
[22] M. Z. El-Sadek, Power System Voltage Stability and Power Quality, in Mukhtar Press, Egypt, Assuit, 2002.
[23] G. M. Huang and L. Zhao, Measurement Based Voltage Stability Monitoring of Power System, www.pserc.wisc.edu.
[24] G. V. K. Murthy, S. Sivanagaraju, S. Satyanarayana, and B. Hanumantha Rao, "Voltage stability index of radial distribution networks with distributed generation," Int. J. Electr. Eng., vol. 5, no. 6, pp. 791-803, 2012.
[25] A. M. Chebbo, M. R. Irwing, and M. J. H. Sterling, "Voltage collapse proximity indicator: behavior and implications," in IEE Proc. C Gen. Transm. Distrib., vol. 139, no. 3, pp. 241-252, May 1992.
[26] P. A. Lof, G. Andersson, and D. J. Hill, "Voltage stability indices for stressed power systems," IEEE Trans. Power Syst., vol. 8, no. 1, pp. 326-334, Feb. 1993.
[27] P. Kessel and H. Glavitsch, "Estimating the voltage stability of a power system," IEEE Trans. Power Deliv., vol. 1, no. 3, pp. 346-352, Jul. 1986.
[28] M. Moghavvemi and M. O. Faruque, "Technique for assessment of voltage stability in ill-conditioned radial distribution network," IEEE Power Eng. Rev., vol. 21, no. 1, pp. 58-60, Jan. 2001.
[29] G. B. Jasmon and L. H. C. C. Lee, "Distribution network reduction for voltage stability analysis and load flow calculations," Electr. Power Energy Syst., vol. 13, no. 1, pp. 9-13, Feb. 1991.
[30] F. Gubina and B. Strmcnik, "A simple approach to voltage stability assessment in radial networks," IEEE Trans. Power Syst., vol. 12, no. 3, pp. 1121-1128, Aug. 1997.
[31] M. Moghavvemi and M. O. Faruque, "Power system security and voltage collapse: a line outage based indicator for prediction," Int. J. Electr. Power Energy Syst., vol. 21, no. 6, pp. 455-461, Aug. 1999.
[32] U. Eminoglu and M. H. Hocaoglu, "A voltage stability index for radial distribution networks," in Proc. 42nd Int. Univ. Power Eng. Conf., pp. 408-413, England, Brighton, Sep. 2007.
[33] M. Chakravorty and D. Das, "Voltage stability analysis of radial distribution networks," Int. J. Electr. Power Energy Syst., vol. 23, no. 2, pp. 129-135, Feb. 2001.
[34] A. Chaturvedi, K. Prasad, and R. Ranjan, "A new voltage stability index for radial distribution network," Int. J. Power Energy Syst., vol. 26, no. 1, pp. 83-88, Jan. 2006.