A DC-DC Interleaved Converter Based on Buck Topology with High Step-Down Conversion Ratio
Subject Areas : electrical and computer engineeringM. Ghanbari 1 , M. R. Yazdani 2 *
1 -
2 -
Abstract :
High step-down conversion ratio cannot be achieved by the conventional buck converter. Also, the switch voltage stress is another drawback of the regular buck converter for high input voltages. In this paper, a DC-DC switching converter using interleaved method is proposed based on the buck topology to achieve a high step-down conversion ratio. In the structure of this converter, a coupled inductor is used without need of another auxiliary winding. After presenting key waveforms and analysis of the proposed converter, the conversion ratio curves are offered. Moreover, simulation waveforms of a 240 W converter prototype with the input voltage of 150 V and the output voltage of 24 V are shown to verify the theoretical analysis.
[1] م. محمودي، ب. ميرزائيان دهکردي و م. نيرومند، "معرفي يک مبدل SEPIC غير ايزوله جديد با بهره و راندمان بالا براي سيستمهاي فتوولتائيک،" نشريه مهندسي برق و مهندسي کامپيوتر ايران، سال 13، شماره 2- الف، صص. 171-165، پاييز 1394.
[2] م. حيدري و ع. يزديان ورجاني، "ارائه يک مبدل الکترونيک قدرت AC/AC سهفاز به سهفاز جديد با استفاده از شش کليد IGBT،" نشريه مهندسي برق و مهندسي کامپيوتر ايران، سال 14، شماره 4- الف، صص. 261-247، زمستان 1395.
[3] M. Bendali, C. Larouci, T. Azib, C. Marchand, and G. Coquery, "Design methodology of an interleaved buck converter for onboard automotive application, multi-objective optimisation under multi-physic constraints," IET Electr. Syst. Transp., vol. 5, no. 2, pp. 53-60, Jun. 2015.
[4] D. D. C. Lu and V. G. Agelidis, "Photovoltaic-battery-powered DC bus system for common portable electronic devices," IEEE Trans. Power Electron., vol. 24, no. 3, pp. 849-855, Mar. 2009.
[5] M. Pahlevaninezhad, J. Drobnik, P. K. Jain, and A. Bakhshai, "A load adaptive control approach for a zero-voltage-switching DC/DC converter used for electric vehicles," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 920-933, Feb. 2012.
[6] S. Kai, Z. Li, X. Yan, and J. M. Guerrero, "A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage," IEEE Trans. Power Electron., vol. 26, no. 10, pp. 3032-3045, Oct. 2011.
[7] M. Esteki, E. Adib, H. Farzanehfard, and S. A. Arshadi, "Auxiliary circuit for zero-voltage-transition interleaved pulse-width modulation buck converter," IET Power Electron., vol. 9, no. 3, pp. 568-575, Sept. 2016.
[8] C. S. Moo, J. C. Yu, H. L. Cheng, and C. H. Yao, "Twin-buck converter with zero-voltage transition," IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2366-2371, Jun. 2011.
[9] Y. C. Chuang, "High-efficiency ZCS buck converter for rechargeable batteries," IEEE Trans. Power Electron., vol. 57, no. 7, pp. 2463-2472, Jul. 2010.
[10] F. Marvi, E. Adib, and H. Farzanehfard, "Efficient ZVS synchronous buck converter with extended duty cycle and low-current ripple," IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5403-5409, Sept. 2016.
[11] K. Yao, Y. Mao, X. Ming, and F. C. Lee, "Tapped-inductor buck converter for high-step-down DC-DC conversion," IEEE Trans. Power Electron., vol. 20, no. 4, pp. 775-780, Jul. 2005.
[12] M. R. Yazdani, N. A. Filabadi, and J. Faiz, "Conducted electromagnetic interference evaluation of forward converter with symmetric topology and passive filter," IET Power Electronics, vol. 5, no. 7, pp. 1113-1120, May 2014.
[13] K. Yao, Y. Qiu, M. Xu, and F. C. Lee, "A novel winding-coupled buck converter for high-frequency, high-step-down DC-DC conversion," IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1017-1024, Sept. 2005.
[14] P. Xu, J. Wei, and F. C. Lee, "Multiphase coupled-buck converter-a novel high efficient 12 V voltage regulator module," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 74-82, Jan. 2003.
[15] R. J. Wai and J. J. Liaw, "High-efficiency coupled-inductor-based step-down converter," IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4265-4279, Jun. 2016.
[16] K. I. Hwu, W. Z. Jiang, and Y. T. Yau, "Nonisolated coupled-inductor-based high step-down converter with zero DC magnetizing inductance current and nonpulsating output current," IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4362-4377, Jun. 2016.
[17] X. Song, C. W. Siu, C. T. Siew, and C. K. Tse, "A family of exponential step-down switched-capacitor converters and their applications in two stage converters," IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1870-1880, Apr. 2014.
[18] M. Esteki, B. Poorali, E. Adib, and H. Farzanehfard, "Interleaved buck converter with continuous input current, extremely low output current ripple, low switching losses, and improved step-down conversion ratio," IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4769-4776, Aug. 2015.
[19] I. O. Lee, S. Y. Cho, and G. W. Moon, "Interleaved buck converter having low switching losses and improved step-down conversion ratio," IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3664-3675, Aug. 2012.
[20] K. I. Hwu, W. Z. Jiang, and P. Y. Wu, "An expandable four-phase interleaved high step-down converter with low switch voltage stress and automatic uniform current sharing," IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6064-6072, Oct. 2016.
[21] C. F. Chuang, C. T. Pan, and H. C. Cheng, "A novel transformer-less interleaved four-phase step-down DC converter with low switch voltage stress and automatic uniform current sharing characteristics," IEEE Trans. Power Electron., vol. 31, no. 1, pp. 406-417, Jan. 2015.
[22] C. T. Pan, C. F. Chuang, and C. C. Chu, "A novel transformerless interleaved high step-down conversion ratio DC-DC converter with low switch voltage stress," IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5290-5299, Oct. 2014.