تحلیل پایداری نمایی سیستمهای کنترل از راه دور خطی گسسته با نمونهبرداری غیر یکنواخت
محورهای موضوعی : مهندسی برق و کامپیوترامير امينزاده قويفکر 1 * , امیر ریختهگر غیاثی 2 , محمدعلی بادامچیزاده 3 , فرزاد هاشمزاده 4
1 - دانشگاه تبریز
2 - دانشگاه تبریز
3 - دانشگاه تبریز
4 - دانشگاه تبریز
کلید واژه: سیستم کنترل از راه دور ربات پایه و پیرو سیستم کنترل شبکهای پایداری نمونهبرداری معادلات LMI,
چکیده مقاله :
کنترل از راه دور سیستمها در فرایندهایی که دسترسی به نیروی کار انسانی با دشواری همراه بوده، همواره مورد توجه قرار گرفته است. در این مقاله سیستمهای کنترل از راه دور به صورت گونه خاصی از سیستمهای شبکهای که شامل سیستم نمونهبردار غیر یکنواخت به همراه تأخیر میباشد مدلسازی شده و از توابع تأخیری کاهشی برای نشاندادن معادلات سیستم بهره گرفته شده است. رباتهای پایه و پیرو را به صورت سیستمهای خطی پیوسته با زمان در نظر گرفته و از روش تأخیر در ورودی برای آنالیز پایداری استفاده گردیده است. به کمک تابع لیاپانف پیشنهادی، شرایط کافی جهت پایداری نمایی سیستم کنترل از راه دور با ساختار گسسته و شبکهای، معرفی گردیده و مشاهده خواهد شد که این شرایط در مقایسه با کارهای قبلی حالات محافظهکارانه کمتری دارند. همچنین به دنبال محاسبه کران بالایی برای بازه نمونهبرداری سیگنالهای کنترلی واردشده بر رباتهای پایه و پیرو خواهیم بود به گونهای که خللی در پایداری نمایی سیستم وارد ننماید. به این منظور شرایط پایداری به دست آمده را به صورت یک مسئله بهینهسازی محدب و در قالب معادلات LMI تبدیل خواهیم کرد. در قسمت شبیهسازی نیز رفتار یک سیستم کنترل از راه دور، تحت نمونهبرداری غیر یکنواخت نشان داده شده و نقش زمان نمونهبرداری در مصالحه بین پایداری و شفافیت بررسی گردیده است.
Teleoperation systems have attracted more attention in processes that human operator’s availability is difficult. In this paper, using retarded functions, teleoperation systems have been modeled as a special case of Network Control Systems (NCS) with nonuniform sampling and network delays. It is assumed that slave and master robots are linear and continues-time systems and input-delay approach is used for the stability analysis. Using the proposed Lyapunov function, the sufficient conditions for the stability of discrete network-based teleoperation system is proposed. It will be represented that the proposed conditions are less conservative than previous recent researches. Also an upper bound of sampling time for discrete control signals is computed in a manner that does not disturb the stability conditions. To meet this condition the problem is defined as the convex optimization program and is represented by the LMI terms. In the simulation part, the behavior of the teleoperation system under the nonuniform sampling is represented and the effect of sampling time on the trade-off between the stability and transparency has been studied.
[1] P. F. Hokayem and M. W. Spong, "Bilateral teleoperation: an historical survey," Automatica, vol. 42, no. 12, pp. 2035-2057, Dec. 2006.
[2] T. Hu, X. Huang, and Q. Tan, "Time delay prediction for space teleoperation based on non-gaussian auto-regressive model," in Proc. of Int. Conf. on Modelling, Identification & Control, ICMIC'12, , pp. 567-572, 24-26 Jun. 2012.
[3] S. Soylu, F. Firmani, B. J. Buckham, and R. P. Podhorodeski, "Comprehensive underwater vehicle-manipulator system teleoperation," in Proc. OCEANS, 8 pp., 20-23 Sept. 2010.
[4] W. Wei and Y. Kui, "Teleoperated manipulator for leak detection of sealed radioactive sources," in Proc .IEEE Int. Conf. on Robotics and Automation, ICRA'04, vol. 2, pp. 1682-1687, 26 Apr.-1 May 2004.
[5] K. Y. Kim, H. S. Song, J. W. Suh, and J. J. Lee, "A novel surgical manipulator with workspace-conversion ability for telesurgery," IEEE/ASME Trans. on Mechatronics, , vol. 18, no. 1, pp. 200-211, Feb. 2013.
[6] S. Hirche and M. Buss, "Human-oriented control for haptic teleoperation," Proceedings of the IEEE, vol. 100, no. 3, pp. 623-647, Mar. 2012.
[7] B. Willaert, D. Reynaerts, H. Van Brussel, and E. B. Vander Poorten, "Bilateral teleoperation: quantifying the requirements for and restrictions of ideal transparency," IEEE Trans. on Control Systems Technology, vol. 22, no. 1, pp. 387-395, Jan. 2014.
[8] S. Islam, P. X. Liu, and A. El Saddik, "New stability and tracking criteria for a class of bilateral teleoperation systems," Information Sciences, vol. 278, pp. 868-882, Sept. 2014.
[9] J. Li, M. Tavakoli, and Q. Huang, "Stability of cooperative teleoperation using haptic devices with complementary degrees of freedom," IET Control Theory & Applications, vol. 8, no. 12, pp. 1062-1070, 14 Aug. 2014.
[10] E. Nuno, L. Basanez, C. Lopez-Franco, and N. Arana-Daniel, "Stability of nonlinear teleoperators using PD controllers without velocity measurements," J. of the Franklin Institute, vol. 351, no. 1, pp. 241-258, Jan. 2014.
[11] G. Leung and B. Francis, "Bilateral control of teleoperators with time delay through a digital communication channel," in Proc. of the Annual Allerton Conf. on Communication Control and Computing, pp. 692-692, 1992.
[12] K. Kosuge and H. Murayama, "Bilateral feedback control of telemanipulator via computer network in discrete time domain," in Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2219-2224, 25-25 Apr. 1997.
[13] S. Stramigioli, "About the use of port concepts for passive geometric telemanipulation with varying time delays," in Proc. to Mechatronics Conf., pp. 944-953, 24-26 Jun. 2002.
[14] I. Polushin and H. Marquez, "Stabilization of bilaterally controlled teleoperators with communication delay: an ISS approach," International J. of Control, vol. 76, no. 8, pp. 858-870, Aug. 2003.
[15] J. Artigas, C. Preusche, G. Hirzinger, G. Borghesan, and C. Melchiorri, "Bilateral energy transfer in delayed teleoperation on the time domain," in Proc. IEEE Int. Conf. on Robotics and Automation, ICRA'08, pp. 671-676, 9-23 May. 2008.
[16] J. E. Colgate and G. G. Schenkel, "Passivity of a class of sampled-data systems: application to haptic interfaces," J. of Robotic Systems, vol. 14, no. 1, pp. 37-47, Jan. 1997.
[17] J. J. Gil, A. Avello, A. Rubio, and J. Florez, "Stability analysis of a 1 dof haptic interface using the Routh-Hurwitz criterion," IEEE Trans. on Control Systems Technology, vol. 12, no. 4, pp. 583-588, Jul. 2004.
[18] N. Diolaiti, G. Niemeyer, F. Barbag, and J. K. Salisbury Jr., "Stability of haptic rendering: discretization, quantization, time delay, and coulomb effects," IEEE Trans. on Robotics, vol. 22, no. 2, pp. 256-268, Apr. 2006.
[19] J. H. Ryu, D. S. Kwon, and B. Hannaford, "Stable teleoperation with time-domain passivity control," IEEE Trans. on Robotics and Automation, vol. 20, no. 2, pp. 365-373, Apr. 2004.
[20] A. Jazayeri and M. Tavakoli, "A passivity criterion for sampled-data bilateral teleoperation systems," IEEE Trans. on Haptics, vol. 6, no. 3, pp. 363-369, Jul-Sept. 2013.
[21] A. Jazayeri and M. Tavakoli, "Absolute stability analysis of sampled-data scaled bilateral teleoperation systems," Control Engineering Practice, vol. 21, no. 8, pp. 1053-1064, Aug. 2013.
[22] A. Haddadi and K. Hashtrudi-Zaad, "Least conservative robust stability condition for linear bilateral teleoperation control systems," in Proc. Third Joint EuroHaptics Conf. and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems World Haptics, pp. 220-225, 18-20 Mar. 2009.
[23] Y. C. Tian and D. Levy, "Compensation for control packet dropout in networked control systems," Information Sciences, vol. 178, no. 5, pp. 1263-1278, 1 Mar. 2008.
[24] T. C. Yang, "Networked control system: a brief survey," IEE Proeedings Control Theory and Applications, vol. 153, pp. 403-412, Jul. 2006.
[25] W. Chen and L. Qiu, "Stabilization of networked control systems with multirate sampling," Automatica, vol. 49, no. 6, pp. 1528-1537, Jun. 2013.
[26] M. Fu and L. Xie, "The sector bound approach to quantized feedback control," IEEE Trans. on Automatic Control, vol. 50, no. 11, pp. 1698-1711, Nov. 2005.
[27] M. Cloosterman, N. van de Wouw, M. Heemels, and H. Nijmeijer, "Robust stability of networked control systems with time-varying network-induced delays," in Proc. 45th IEEE Conf. on Decision and Control, pp. 4980-4985, 13-15 Dec. 2006.
[28] P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, "Stability of delay impulsive systems with application to networked control systems," Trans. of the Institute of Measurement and Control, vol. 32, no. 5, pp. 511-528, 9-13 Jul. 2010.
[29] K. Liu and E. Fridman, "Networked-based stabilisation via discontinous Lyapunov functionals" International J. of Robust and Nonlinear Control, vol. 22, no. 4, pp. 420-436, Mar. 2012.
[30] M. Moarref and L. Rodrigues, "On exponential stability of linear networked control systems," International J. of Robust and Nonlinear Control, vol. 24, no. 7, pp. 1221-1240, May 2014.
[31] J. Lofberg, "YALMIP: a toolbox for modeling and optimization in MATLAB," in Proc. IEEE Int. Symp. on Computer Aided Control Systems Design, pp. 284-289, 2-4 Sept. 2004.
[32] D. Lee and M. W. Spong, "Passive bilateral teleoperation with constant time delay," IEEE Trans. on Robotics, vol. 22, no. 2, pp. 269-281, Apr. 2006.
[33] R. Oboe and P. Fiorini, "A design and control environment for internet-based telerobotics," International J. of Robotics Research, vol. 17, no. 4, pp. 433-449, 1998.
[34] D. Lee and M. W. Spong, "Passive bilateral control of teleoperators under constant time-delay," IFAC Proceedings Volumes, vol. 38, no.1, pp. 109-114, 2005.
[35] S. Hirche and M. Buss, "Packet loss effects in passive telepresence systems," in Proc. 43rd IEEE Conf. on Decision and Control, CDC'04, pp. 4010-4015, 14-17 Dec. 2004.
[36] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, vol. 99, Springer Science & Business Media, 2013.
[37] E. Fridman, "A refined input delay approach to sampled-data control," Automatica, vol. 46, no. 2, pp. 421-427, Feb. 2010.
[38] P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, "Exponential stability of impulsive systems with application to uncertain sampled-data systems," Systems & Control Letters, vol. 57, no. 5, pp. 378-385, May 2008.