برنامهریزی توسعه هماهنگ شبکههای برق و گاز
محورهای موضوعی : مهندسی برق و کامپیوتروحید خلیق 1 , مجید علومی بایگی 2 *
1 - دانشگاه فردوسی
2 - دانشگاه فردوسی مشهد
کلید واژه: شبکه گازشبکه برقتوسعه یکپارچهمعیار امنیت,
چکیده مقاله :
برنامهریزی توسعه هماهنگ واحدهای نیروگاهی با در نظر گرفتن کفایت سوخت مورد نیاز همواره توجه برنامهریزان صنعت برق را به خود جلب کرده است. عدم هماهنگی شبکههای برق و گاز در توسعه، منجر به سرمایهگذاری بیش از حد نیاز و در پارهای از موارد ایجاد مشکل در تأمین سوخت نیروگاه میشود. از این رو نیاز به مدلی است که با در نظر گرفتن قیود فنی، توسعه شبکههای برق و گاز را هماهنگ کند. در این پژوهش توسعه متمرکز شبکههای گاز و برق با در نظر گرفتن معیار امنیت 1- N در شبکه گاز مدلسازی شده است. به این منظور تأثیر سوخت دوم نیز در مدلسازی شرایط اضطراری در نظر گرفته شده است. این مدلسازی از دیدگاه یک سرمایهگذار مرکزی تحت عنوان وزارت انرژی است که با در نظر گرفتن قیود فنی به دنبال حداقلکردن هزینه کل سرمایهگذاری و بهرهبرداری شبکههای برق و گاز میباشد. نتایج به دست آمده از مسئله سرمایهگذاری شبکه گاز نشان میدهد که نیاز به افزایش ظرفیت خط لوله در برخی مناطق وجود دارد. همچنین در شبکه برق، نیاز به نصب نیروگاههای جدید در برخی مناطق مشخص شده است. نتایج به دست آمده، حاکی از تأثیرگذاری مدل پیشنهادی بر برنامهریزی توسعه شبکههای برق و گاز و نیز بهبود نتایج با در نظر گرفتن اثر سوخت دوم است.
Planning for the coordinated expansion of generation units, taking into account the fuel needed, has always attracted the attention of power industry planners. Failure to coordinated expansion of electricity and gas networks will result in excessive investment and, in some cases, defects in power supply. Therefore, there is a need to a model coordinating the expansion of electricity and gas networks, while taking into account the technical constraints. In this study, centralized expansion of gas and electricity networks is modeled by considering N-1 security criterion in gas network. This modeling is from the perspective of a central investor who, considering the technical constraints, seeks to minimize the total cost of investment and operation of the electricity and gas networks. The results of the gas network investment problem indicate that there is a need to increase pipeline capacity in some areas. In the proposed case study, the investment cost of the gas network is $19 million, while the total cost of investment and operation of the gas network is $37.19 billion. On the other hand, in the electricity grid, new power plants need to be installed in the designated areas. The results also indicate that the capacity of the F-H transmission line should be increased. Moreover, considering the N-1 criterion for gas pipeline outages, the power grid would prefer to install about 3200 MW of new generation units all around the grid thereby boosting the power network against pipeline outages. However, 2400 MW of new generating units would be adequate when N-1 criterion is omitted.
[1] L. Capuano, International energy outlook 2018 (IEO2018), US Energy Information Administration, EIA: Washington, DC, USA 2018.
[2] [M. Oloomi-Buygi, V. Khaligh, A. Anvari-Moghaddam, and J. M. Guerrero, "A leader-follower approach to gas-electricity expansion planning problem," in Proc. IEEE 18th Int. Conf. on Environment and Electrical Engineering and 2nd Industrial and Commercial Power Systems Europe, EEEIC'18, 5 pp., Palermo, Italy, 12-15 Jun. 2018.
[3] X. Zhou, C. Guo, Y. Wang, and W. Li, "Optimal expansion co-planning of reconfigurable electricity and natural gas distribution systems incorporating energy hubs," Energies, vol. 10, no. 1, p. 124, 2017.
[4] C. Unsihuay-Vila, J. Marangon-Lima, A. Z. de Souza, I. J. Perez-Arriaga, and P. P. Balestrassi, "A model to long-term, multiarea, multistage, and integrated expansion planning of electricity and natural gas systems," IEEE Trans. on Power Systems, vol. 25, no. 2, pp. 1154-1168, May 2010.
[5] C. A. Saldarriaga, R. A. Hincapie, and H. Salazar, "A holistic approach for planning natural gas and electricity distribution networks," IEEE Trans. on Power Systems, vol. 28, no. 4, pp. 4052-4063, Nov. 2013.
[6] M. Chaudry, N. Jenkins, M. Qadrdan, and J. Wu, "Combined gas and electricity network expansion planning," Applied Energy, vol. 113, pp. 1171-1187, Jan. 2014.
[7] J. Qiu, Z. Y. Dong, J. H. Zhao, Y. Xu, Y. Zheng, C. Li, et al., "Multi-stage flexible expansion co-planning under uncertainties in a combined electricity and gas market," IEEE Trans. on Power Systems, vol. 30, no. 4, pp. 2119-2129, Jul. 2015.
[8] F. Barati, et al., "Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems," IEEE Trans. on Power Systems, vol. 30, no. 5, pp. 2527-2537, Sept 2015.
[9] J. Qiu, et al., "Low carbon oriented expansion planning of integrated gas and power systems," IEEE Trans. on Power Systems, vol. 30, no. 2, pp. 1035-1046, Mar. 2015.
[10] X. Zhang, M. Shahidehpour, A. S. Alabdulwahab, and A. Abusorrah, "Security-constrained co-optimization planning of electricity and natural gas transportation infrastructures," IEEE Trans. on Power Systems, vol. 30, no. 6, pp. 2984-2993, Nov. 2015.
[11] J. Qiu, et al., "A linear programming approach to expansion co-planning in gas and electricity markets," IEEE Trans. on Power Systems, vol. 31, no. 5, pp. 3594-3606, Sept. 2016.
[12] G. Li, R. Zhang, T. Jiang, H. Chen, L. Bai, and X. Li, "Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process," Applied Energy, vol. 194, pp. 696-704, 15 May 2017.
[13] B. Zhao, A. J. Conejo, and R. Sioshansi, "Coordinated expansion planning of natural gas and electric power systems," IEEE Trans. on Power Systems, vol. 33, no. 3, pp. 3064-3075, 2017.
[14] T. Ding, Y. Hu, and Z. Bie, "Multi-stage stochastic programming with nonanticipativity constraints for expansion of combined power and natural gas systems," IEEE Trans. on Power Systems, vol. 33, no. 1, pp. 317-328, Jan. 2018.
[15] B. Odetayo, J. MacCormack, W. D. Rosehart, and H. Zareipour, "A sequential planning approach for distributed generation and natural gas networks," Energy, vol. 127, pp. 428-437, 15 May 2017.
[16] Q. Zeng, B. Zhang, J. Fang, and Z. Chen, "A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system," Applied Energy, vol. 200, pp. 192-203, 15 Aug. 2017.
[17] C. He, L. Wu, T. Liu, and Z. Bie, "Robust co-optimization planning of interdependent electricity and natural gas systems with a joint N-1 and probabilistic reliability criterion," IEEE Trans. on Power Systems, vol. 33, no. 2, pp. 2140-2154, Mar. 2017.
[18] J. B. Nunes, N. Mahmoudi, T. K. Saha, and D. Chattopadhyay, "A stochastic integrated planning of electricity and natural gas networks for Queensland, Australia considering high renewable penetration," Energy, vol. 153, pp. 539-553, 15 Jun. 2018.
[19] J. B. Nunes, N. Mahmoudi, T. K. Saha, and D. Chattopadhyay, "Multi-stage co-planning framework for electricity and natural gas under high renewable energy penetration," IET Generation, Transmission & Distribution, vol. 12, no. 19, pp. 4284-4291, 2018.
[20] V. Khaligh, M. Oloomi Buygi, A. Anvari-Moghaddam, and J. M. Guerrero, "A multi-attribute expansion planning model for integrated gas-electricity system," Energies, vol. 11, no. 10, 22 pp., 2018.
[21] B. Odetayo, M. Kazemi, J. MacCormack, W. Rosehart, H. Zareipour, and A. R. Seifi, "A chance constrained programming approach to the integrated planning of electric power generation, natural gas network and storage," IEEE Trans. on Power Systems, vol. 33, no. 6, pp. pp. 6883-6893, Nov. 2018.
[22] E. S. Menon, Gas Pipeline Hydraulics, CRC Press, 2005.
[23] D. M. Ojeda-Esteybar, R. G. Rubio-Barros, O. Ano, and A. Vargas, "Integration of electricity and natural gas systems-identification of coordinating parameters," in Proc. IEEE PES Transmission & Distribution Conf. and Exposition-Latin America, PES T&D-LA'14, 8 pp., Medellin, Colombia, 10-13 Sept. 2014.
[24] Council Taranaki Regional, Shell Todd Oil Services Ltd Maui and Production Station Monitoring Programme Annual Report 2015-2016, Technical Report 2016-117, 2017.
[25] H. Seyedi and M. Sanaye-Pasand, "New centralised adaptive load-shedding algorithms to mitigate power system blackouts," IET Generation, Transmission & Distribution, vol. 3, no. 1, pp. 99-114, Jan. 2009.