طراحی کنترلکننده مقاوم LMI برای مبدل SIDO بوست/ بوست مبتنی بر مدل فلوگراف سیگنال
محورهای موضوعی : مهندسی برق و کامپیوترمجید عباسی 1 * , محمدرضا علیزاده پهلوانی 2 , احمد عفیفی 3
1 - دانشگاه صنعتی مالک اشتر
2 - دانشگاه صنعتی مالک اشتر
3 - دانشگاه صنعتی مالک اشتر
کلید واژه: مبدل SIDOمدل فلوگراف سیگنالکنترل مقاومنامساوی LMI,
چکیده مقاله :
در این مقاله مراحل طراحی مقاوم برای یک مبدل تکالقاگر دوخروجی (SIDO) با استفاده از روش نامساوی ماتریسی (LMI) مورد بررسی قرار گرفته است. با توجه به ساختار پیچیده مبدل از روش فلوگراف سیگنال (SFG) برای مدلکردن آن استفاده شده است. با استفاده از مدل استخراجشده از SFG، عوامل غیر خطی و نامشخص در قالب یک چندضلعی محدب و به عنوان محدودیتهای روش LMI در نظر گرفته میشوند. مقاومبودن مبدل از طریق حذف تأثیر تغییرات مشخص شده و نیز داشتن پاسخ مناسب از طریق جایدهی قطبها توسط روش LMI تضمین میگردد. خروجیهای به دست آمده بر روی پارامترهای فیدبک حالت اعمال شده و نتایج عملکردی آن در محیط سیمولینک متلب و بر روی مدار سوئیچینگ مورد ارزیابی و صحهگذاری قرار گرفتهاند. در نهایت نتایج به دست آمده با یک کنترلکننده PI رایج مقایسه شده است.
A robust control design process based on a linear Matrix Inequalities (LMI) for a Single Inductor Multi Output (SIMO) boost converter has been presented in this paper. Considering complicated multi-stages operation of SIDO converter, Signal Flow Graph (SFG) modelling was used to predict all behavior of the converter. Using the SFG model, nonlinearities and uncertainties was modelled as a convex polytope for LMI design constraints. This method guarantees a certain perturbation rejection level and a region of pole location. The derived parameters from LMI were applied on state-feedback coefficients in Matlab/Simulink to show the validity of the presented LMI method. Finally, the obtained results have been compared with a conventional PI controller.
[1] P. Patra, A. Patra, and N. Misra, "A single-inductor multiple-output switcher with simultaneous buck, boost, and inverted outputs," IEEE Trans. on Power Electronics, vol. 27, no. 4, pp. 1936-1951, Apr. 2012.
[2] R. Zhou, H. S. H. Chung, and R. Zhang, "An inductive power transfer system for driving multiple OLED light panels," IEEE Trans. on Power Electronics, vol. 31, no. 10, pp. 7131-7147, Oct. 2016.
[3] H. P. Le, C. S. Chae, K. C. Lee, et al., "A single-inductor switching DC DC converter with five outputs and ordered power-distributive control," IEEE J. of Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007.
[4] Y. Rozanov, et al., Power Electronics Basics: Operating Principles, Design, Formulas, and Applications, Boca Raton: CRC Press, 2015.
[5] Z. Sha, X. Wang, Y. Wang, et al., Optimal Design of Switching Power Supply, John Wiley & Sons, 2015.
[6] S. Vazquez, J. I. Leon, L. G. Franquelo, et al., "DC-voltage-ratio control strategy for multilevel cascaded converters fed with a single DC source," IEEE Trans. on Industrial Electronics, vol. 56, no. 7, pp. 2513-2521, Jul. 2009.
[7] D. A. Ruiz-Caballero, R. M. Ramos-Astudillo, S. A. Mussa, et al., "Symmetrical hybrid multilevel DC AC converters with reduced number of insulated DC supplies," IEEE Trans. on Industrial Electronics, vol. 57, no. 7, pp. 2307-2314, Jul. 2010.
[8] E. Babaei, M. F. Kangarlu, and M. Sabahi, "Extended multilevel converters: an attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters," IET Power Electronics, vol. 7, no. 1, pp. 157-166, Jan. 2014.
[9] D. Ma, W. H. Ki, C. Y. Tsui, et al., "Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode," IEEE J. of Solid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan. 2003.
[10] K. S. Seol, Y. J. Woo, G. H. Cho, et al., "A synchronous multioutput step-up/down DC-DC converter with return current control," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 56, no. 3, pp. 210-214, Mar. 2009.
[11] J. Kim, D. S. Kim, and C. Kim, "A single-inductor eight-channel output DC DC converter with time-limited power distribution control and single shared hysteresis comparator," IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 60, no. 12, pp. 3354-3367, Dec. 2013.
[12] R. J. Wai, C. Y. Lin, and B. H. Chen, "High-efficiency dc-dc converter with two input power sources," IEEE Trans. on Power Electronics, vol. 27, no. 4, pp. 1862-1875, Apr. 2012.
[13] W. Y. Choi, "High-efficiency DC-DC converter with fast dynamic response for low-voltage photovoltaic sources," IEEE Trans. on Power Electronics, vol. 28, no. 2, pp. 706-716, Feb. 2013.
[14] P. H. Lan, T. J. Yang, and P. C. Huang, "A high-efficiency, wide workload range, digital off-time modulation (DOTM) DC-DC converter with asynchronous power saving technique," IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 1, pp. 67-77, Jan. 2013.
[15] R. Naim, G. Weiss, and S. Ben-Yaakov, "H∞ control applied to boost power converters," IEEE Trans. on Power Electronics, vol. 12, no. 4, pp. 677-683, Jul. 1997.
[16] T. S. Lee, S. J. Chiang, and J. M. Chang, "H∞ loop-shaping controller designs for the single-phase UPS inverters," IEEE Trans. on Power Electronics, vol. 16, no. 4, pp. 473-481, Jul. 2001.
[17] E. Vidal-Idiarte, L. Martinez-Salamero, J. Calvente, et al., "An H∞ control strategy for switching converters in sliding-mode current control," IEEE Trans. on Power Electronics, vol. 21, no. 2, pp. 553-556, Mar. 2006.
[18] G. F. Wallis and R. Tymerski, "Generalized approach for μ synthesis of robust switching regulators," IEEE Trans. on Aerospace and Electronic Systems, vol. 36, no. 2, pp. 422-431, Apr. 2000.
[19] C. Olalla, R. Leyva, and A. El Aroudi, "QFT design for current-mode PWM buck converters operating in continuous and discontinuous conduction modes," in Proc. IECON 32nd Annual Conf. on IEEE Industrial Electronics, IECON’06, pp. 1828-1833, Paris, France, 6-10 Nov. 2006.
[20] V. F. Montagner and L. D. Peres, "H∞ control with pole location for a DC-DC converter with a switched load," in Proc. IEEE Int. Symp. on Industrial Electronics, ISIE'03, pp. 550-555, Rio de Janeiro, Brazil, 9-11 Jun. 2003.
[21] V. F. Montagner and P. L. D. Peres, "Robust pole location for a DC-DC converter through parameter dependent control," in Proc. of Int. Symp. on Circuits and Systems, ISCAS'03, vol. 3, pp. 351-354, May 2003.
[22] V. F. Montagner, R. Oliveira, V. J. S. Leite, et al., "LMI approach for H∞ linear parameter-varying state feedback control," IEE Proc. Control Theory and Applications, vol. 152, no. 2, pp. 195-201, Mar. 2005.
[23] B. He and M. Yang, "Robust LPV control of diesel auxiliary power unit for series hybrid electric vehicles," IEEE Trans. on Power Electronics, vol. 21, no. 3, pp. 791-798, May 2006.
[24] C. Olalla, R. Leyva, A. El Aroudi, et al., "LMI robust control design for boost PWM converters," IET Power Electronics, vol. 3, no. 1, pp. 75-85, Jan. 2010.
[25] C. A. Torres-Pinzon, et al., "LMI-based robust controllers for DC-DC cascade boost converters," J. of Power Electronics, vol. 12, no. 4, pp. 538-547, Jul. 2012.
[26] Y. S. Lee, "A systematic and unified approach to modeling switches in switch-mode power supplies," IEEE Trans. on Industrial Electronics, vol. 32, no. 4, pp. 445-448, Nov. 1985.
[27] P. Patra, J. Ghosh, and A. Patra, "Control scheme for reduced cross-regulation in single-inductor multiple-output DC-DC converters," IEEE Trans. on Industrial Electronics, vol. 60, no. 11, pp. 5095-5104, Nov. 2013.
[28] M. Veerachary, "General rules for signal flow graph modeling and analysis of dc-dc converters," IEEE Trans. on Aerospace and Electronic Systems, vol. 40, no. 1, pp. 259-271, Jan. 2004.
[29] T. Li, Single Inductor Multiple Output Boost Regulator, Google Patents, 2000.
[30] F. Golnaraghi and B. С. Kuo, Automatic Control Systems, John Wiley & Sons, 2002.
[31] J. Bernussou, P. L. D. Peres, and J. C. Geromel, "A linear programming oriented procedure for quadratic stabilization of uncertain systems," Systems & Control Letters, vol. 13, no. 1, pp. 65-72, Jul. 1989.
[32] S. P. Boyd, et al., Linear Matrix Inequalities in System and Control Theory, SIAM, 1994.
[33] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, New York: Wiley, 2007
[34] P. Gahinet and P. Apkarian, "A linear matrix inequality approach to H∞ control," International J. of Robust and Nonlinear Control, vol. 4, no. 4, pp. 421-448, Jul. 1994.
[35] M. Chilali and P. Gahinet, "H∞ design with pole placement constraints: an LMI approach," IEEE Trans. on Automatic Control, vol. 41, no. 3, pp. 358-367, Mar. 1996.
[36] W. M. Haddad and D. S. Bernstein, "Controller design with regional pole constraints," IEEE Trans. on Automatic Control, vol. 37, no. 1, pp. 54-69, Jan. 1992.
[37] J. Lofberg, "YALMIP: a toolbox for modeling and optimization in MATLAB," in Proc. IEEE Int. Symp. on Computer Aided Control Systems Designpp. 284-289, New Orleans, LA, USA, 2-4 Sept. 2004.