روش خودکار مرزبندی عروق و تشخیص دقیق پلاک سخت در تصاویر اولتراسوند داخل عروقی
محورهای موضوعی : مهندسی برق و کامپیوتربهشاد مهران 1 * , محمدرضا یزدچی 2 , حسین پورقاسم 3
1 - دانشگاه آزاد اسلامی، واحد نجفآباد
2 - دانشگاه اصفهان
3 - دانشگاه آزاد اسلامی، واحد نجفآباد
کلید واژه: تشخیص پلاک تصویربرداری اولتراسوند داخل عروقی کانتور فعال مرزبندی عروق,
چکیده مقاله :
بخشبندی تصویر به منظور تشخیص مرزهای رگ امری ضروری جهت تشخیص دقیق بیماری انسداد عروق قلب به وسیله تصویربرداری اولتراسوند درونرگی (IVUS) است. در این مقاله یک روش جدید جهت بخشبندی تصاویر IVUS پیشنهاد شده است. ابتدا پیشپردازشهایی به منظور تبدیل تصاویر از مختصات دکارتی به مختصات قطبی، حذف کاتتر موجود در تصاویر و از بین بردن نویز اسپکل با فیلتر غیر خطی و غیر ایزوتروپیک انتشاری انجام شده است. سپس با استفاده از فیلتر گابور ویژگیهای بافت تصاویر استخراج شده و با استفاده از مدل کانتور فعال برداری، به بخشبندی تصاویر و تعیین مرز عروق پرداخته شده است. با روش خوشهبندی فازی پلاکهای کلسیم، مشخص و با استفاده از مدل کانتور فعال مرز دقیق پلاکهای کلسیم استخراج شده است. این روش بر روی سی تصویر نمونه آزمایش شده و نتایج بخشبندی تصویر با نظر پزشک متخصص اعتبارسنجی شده است. اختلاف مساحت مرز داخلی رگ با نظر پزشک متخصص 236/0431/0 و اختلاف مساحت مرز خارجی رگ با نظر پزشک متخصص 723/0653/0 است. اختلاف مساحت پلاکهای کلسیم استخراجشده با الگوریتم پیشنهادی در مقایسه با تصاویر بافتشناسی 90/5 درصد حاصل شده است.
Segmentation is necessary to determine the boundaries of the vessel. Intravascular ultrasound imaging (IVUS) is used for the diagnosis of coronary artery diseases. In this study, a new method is proposed for segmentation of IVUS images. First preprocessing is done to convert images from Cartesian coordinates to polar coordinates, remove the catheter in images and speckle noise with Nonlinear Anisotropic Diffusion Filtering. Then, texture features of an image are extracted using Gabor filter, and the image segmentation and determining the vessels boundary will be discussed using active contour without edge for vector value model. Calcium plaques have been determined using phase clustering and the exact boundary of calcium plaques is extracted using active contour model. This method has been tested on thirty images, and the results of the image segmentation have been validated by an expert. The area diffusion between the internal border and the expert’s opinion is 0.4310.236, and the area diffusion between the external border and the expert’s opinion is 0.6530.723. Area diffusion of calcium plaque extracted by the proposed algorithm compared with virtual histology images has been achieved equal to 5.90 percent.
[1] م. بسیج، م. ر. یزدچی، پ. معلم و آ. تاکی، "مرزبندی نواحی سایهدار در تصاویر فراصوت داخل عروقی به کمک کانتورهای فعال،" نشریه مهندسی برق و کامپیوتر ایران، دوره 11، شماره 2، صص. 125-119، زمستان 1392.
[2] E. Brusseau, C. L. de. Korte, F. Mastik, J. A. Schaar, and A. F. W. van Steen, "Fully automatic luminal contour segmentation in intracoronary ultrasound imaging-a statistical approach," IEEE Trans. on Med Imaging, vol. 23, no. 5, pp. 554-566, May 2004.
[3] M. E. Plissiti, D. I. Fotiadis, L. K. Michalis, and G. E. Bozios, "An automated method for lumen and media-adventitia border detection in a sequence of IVUS frames," IEEE Trans. on Information Technology in Biomedicine, vol. 8, no. 2, pp. 131-141, Jun. 2004.
[4] C. B. Burckhardt, "Speckle in ultrasound B-mod scans," IEEE Trans. on Sonics and Ultrasonics, vol. 25, no. 1, pp. 1-6, Jan. 1978.
[5] R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, "Statistics of speckle in ultrasound B-scans," IEEE Trans. on Sonics and Ultrasonics, vol. 30, no. 3, pp. 156-163, May 1983.
[6] Y. Yongjian and S. T. Acton, "Speckle reducing anisotropic diffusion," IEEE Trans. on Image Processing, vol. 11, no. 11, pp. 1260-1270, Nov. 2002.
[7] T. Loupas, W. N. Mcdickew, and P. L. Allan, "An adaptive weighted median filter for speckle suppression in medical ultrasonic images," IEEE Trans. on Circuits Systems, vol. 36, no. 1, pp. 129-135, Jan. 1989.
[8] A. H. Hernandez, D. G. Gill, P. R. Radeve, and E. N. Nofrerias, "Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images," in Proc. Computers in Cardiology, pp. 229-232, 19-22 Sep. 2004.
[9] E. D. S. Filho, Y. Sijo, T. Yambe, A. Tanaka, and M. Yoshizawa, "Segmentation of calcification regions in intravascular ultrasound images by adaptive thresholding," in Proc. 19th IEEE Int. Symp. on Computer-Based Medical Systems, CBMS'06, pp. 446-454, Salt Lake City, UT, USA, Jul. 2006.
[10] A. Roodaki, A. Taki, S. K. Setarehdan, and N. Navab, "Modified wavelet transform features for characterizing different plaque types in IVUS images; a feasibility study," in Proc. 9th Inter Conf. on Signal Processing, pp. 789-792, Beijing, China, 26-29 Oct. 2008.
[11] A. Taki, et al., "A new approach for improving coronary plaque component analysis based on intravascular ultrasound images," Ultrasound Med. Biol., vol. 36, no. 8, pp. 1245-1258, Aug. 2010.
[12] A. Taki, et al., "Automatic segmentation of calcified plaques and vessel borders in IVUS images," International Journal of Computer Assisted Radiology and Surgery, vol. 3, no. 3, pp. 347-354, Sep. 2008.
[13] A. Katouzian, B. Baseri, E. E. Konofagou, and A. F. Laine, "Automatic detection (IVUS) images using wavelet packet signatures," in Proc. SPIE Medical Imaging: Ultrasonics Imaging and Signal Processing, S. A. McAleavey and J. D'hooge, Ed., vol. 6920, 8 pp., 2008.
[14] E. D. S. Filho, M. Yoshizawa, A. Tanaka, Y. Saijo, and T. Iwamoto, "Moment-based texture segmentation of luminal contour in intravascular ultrasound images," Journal of Medical Ultrasonics, vol. 32, no. 3, pp. 91-99, Sep. 2005.
[15] X. Zhang, C. R. Mckay, and M. Sonka, "Tissue characterization in intravascular ultrasound images," IEEE Trans. on Med. Imaging, vol. 17, no. 6, pp. 889-899, Dec. 1998.
[16] A. Konig, M. P. Margolis, R. Virmani, D. Holmes, and V. Klauss, "Technology insight: in vivo coronary plaque classification by intravascular ultrasonography radiofrequency analysis," Nature Clinical Practice Cardiovascular Medicine, vol. 5, no. 4, pp. 219-229, Apr. 2008.
[17] A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, "Coronary plaque classification with intravascular ultrasound radiofrequency data analysis," in Proc. IEEE Ultrasonics Symposium, vol. 106, pp. 2200-2206, 18-21 Sep. 2002.
[18] S. M. O. Malley, J. F. Granada, S. Carlier, M. Naghavi, and I. A. Kakadiaris, "Image-based gating of intravascular ultrasound pullback sequences," IEEE Trans. on Information Technology in Biomedicine, vol. 12, no. 3, pp. 299-306, May 2008.
[19] L. S. Athanasiou, et al., "A novel semiautomated atherosclerotic plaque characterization method using grayscale intravascular ultrasound images: comparision wiith virtual histology," IEEE Trans. on Information Technology in Biomedicine, vol. 16, no. 3, pp. 391-400, May 2012.
[20] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: active contour models," International J. of Computer Vision, vol. 1, no. 4, pp. 321-331, Jan. 1988.
[21] A. Vard, K. Jamshidi, and N. Movahhedinia, "An automated approach for segmentation of intravascular ultrasound images based on parametric active contour models," Australasian College of Physical Scientists and Engineers in Medicine, vol. 35, no. 2, pp. 135-150, Mar. 2012.
[22] G. D. Giannoglou, et al., "A novel active contour model for fully automated segmentation of intravascular ultrasound images: in vivo validation in human coronary arteries," Computers in Biology and Medicine, vol. 37, no. 9, pp. 1292-1302, Sep. 2007.
[23] H. Zhu, Y. Liang, and M. H. Friedman, "IVUS image segmentation based on contrast," in Proc. SPIE Medical Imaging: Image Processing,, vol. 4684, pp. 1727-1733, May 2002.
[24] S. Osher and J. A. Sethian, "Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations," J. of Computational Physics, vol. 79, no. 1, pp. 12-49, Nov. 1998.
[25] G. Unal, S. Bucher, G. Slabaughy, T. Fang, and K. Tanaka, "Shape-driven segmentation of the arterial wall in intravascular ultrasound images," IEEE Trans. on Information Technology in Biomedicine, vol. 12, no. 3, pp. 335-347, May 2008.
[26] T. F. Chan and L. A. Vese, "Active contours without edges," IEEE Trans. on Image Processing, vol. 10, no. 2, pp. 266-277, Feb. 2001.
[27] T. F. Chan, B. Y. Sandberg, and L. A. Vese, "Active contours without edges for vector-valued images," Visual Communication and Image Representation, vol. 11, no. 2, pp. 130-141, Jun. 2000.
[28] C. P. Loizou, et al., "Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery," IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 10, pp. 1653-1669, Nov. 2005.
[29] D. Gabor, "Theory of communication, part 1: the analysis of information," Journal of the Institution of Radio and Communication Engineering, vol. 93, no. 26, pp. 429-441, Nov. 1946.