طراحی خودکار طبقهبندیکنندههای فازی بهینه با استفاده از روش بهینهسازی گروه ذرات
محورهای موضوعی : مهندسی برق و کامپیوتر
1 - دانشگاه بیرجند
کلید واژه: روش بهینهسازی گروه ذرات طبقهبندیکننده فازی توابع عضویت,
چکیده مقاله :
مهمترین موضوع در طراحی طبقهبندیکنندههای فازی، تعیین متغیرهای فازی اعم از نوع و مکان توابع عضویت، بخش مقدم و تالی قواعد فازی و تعداد قواعد بهینه میباشد. در واقع، اینها پارامترهای ساختاری یک طبقهبندیکننده فازی هستند که طراح سعی میکند با یافتن مقادیر بهینه آنها، به بهترین عملکرد (بهعنوان مثال بالاترین نرخ تشخیص صحیح) دست یابد. این مسئله را میتوان بهصورت یک مسئله جستجو در فضای با ابعاد بالا در نظر گرفت، بهگونهای که هر نقطه در فضای پاسخ، نشاندهنده یک مجموعه قواعد با توابع عضویت خاص میباشد که در محلهای ویژه استقرار یافتهاند. با این توضیح به نظر میرسد الگوریتمهای ابتکاری (اعم از تکاملی و هوش جمعی)، ابزار مناسبی برای یافتن بهترین پارامترهای یک طبقهبندیکننده فازی باشند. ویژگی برجسته این روشها این است که با تعریف مناسبی از تابع برازندگی میتوان تخمین بهینهای از کلیه پارامترهای مؤثر در یک طبقهبندیکننده فازی را بهصورت خودکار و بدون نیاز به تنظیم دستی (بهصورت سعی و خطا) بهدست آورد. در این مقاله با بهکارگیری الگوریتم بهینهسازی گروه ذرات روشی برای طراحی بهینه یک طبقهبندیکننده فازی ارائه شده است. روش پیشنهادی قادر است نوع توابع عضویت، محل آنها، قواعد فازی لازم و تعداد آنها را بهطور همزمان تخمین زده و بدون دخالت کاربر نسبت به بهینهسازی آنها اقدام نماید. نتایج بهدست آمده از آزمایشات مکرر بر روی دادههای مشهور و مسئله کاربردی طبقهبندی اهداف رادار، توانایی روش ارائهشده را در استخراج کلیه پارامترهای یک طبقهبندیکننده فازی در مقایسه با روشهای مشابه نشان میدهد.
An important issue in designing a fuzzy classifier is setting its structural and mathematical fuzzy parameters (e.g., number of rules, antecedents, consequents, types and locations of membership functions). In fact, the variations of these parameters establish a wide range high dimensional search space, which makes heuristic methods some suitable candidates to solve this problem (designing optimal fuzzy parameters). In this paper, a method is described for this purpose. In presented technique, all fuzzy parameters of a fuzzy classifier, are interpreted in structure of particles and PSO algorithm is employed to find the optimal one. Extensive experimental results on well-known benchmarks and practical pattern recognition problem (automatic target recognition) demonstrate the effectiveness of the proposed method.
[1] S. Abe and M. S. Lan, "A method for fuzzy rules extraction directly from numerical data and its application to pattern classification," IEEE Trans. Fuzzy Syst., vol. 3, no. 4, pp. 18-28, Feb. 1995.
[2] P. Thrift, "Fuzzy logic synthesis with genetic algorithms," in Proc. 4th Int. Conf. Genetic Algorithms, ICGA'91, pp. 509-513, San Diego, CA, Jul. 1991.
[3] W. R. Hwang and W. E. Thompson, "Design of intelligent fuzzy logic controllers using genetic algorithms," in Proc. IEEE Int. Conf. Fuzzy Syst, pp. 1383-1388, Orlando, FL, US, Jun. 1994.
[4] A. Homaifar and E. McCormick, "Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms," IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 129-139, May 1995.
[5] R. R. Yager and L. A. Zadeh, Adaptive Control with Fuzzy Logic and Genetic Algorithms, Van Nostrand Reinhold Publication, 1993.
[6] M. A. Lee and H. Takagi, "Dynamic control of genetic algorithms using fuzzy logic techniques," in Proc. Int. Conf. Genetic Algorithm, pp. 76-83, Urbana - Champaign, IL, US, Jul. 1993.
[7] H. Ishobuchi, T. Nakashima, and T. Murata, "Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems," IEEE Trans. on Systems, Man and Cybernetics, vol. 29, no. 5, pp. 601-618, Oct. 1999.
[8] H. M. Elragal, "Improving accuracy of fuzzy classifiers using swarm intelligence," in Proc. IEEE 3rd Int. Conf. on Communication Software and Networks, ICCSN'11, pp. 251-257, May 2011.
[9] C. Rani and S. N. Deepa, "Design of optimal fuzzy classifier system using particle swarm optimization," Technical Report, Anna University Coimbatore, 2010.
[10] C. C. Chen, "Design of PSO - based fuzzy classification systems," Tamkang J. of Science and Engineering, vol. 9, no 1, pp. 63-70, Dec. 2006.
[11] K. Shimojima, T. Fukuda, and Y. Hasegawa, "RBF - fuzzy system with GA based unsupervised/supervised learning method," in Proc. Int. Joint Conf. 4th IEEE Int. Conf. Fuzzy Syst./2nd Int. Fuzzy Eng. Symp., FUZZ/IEEE - IFES, vol. 1, pp. 253-258, Yokohama, Japan, Mar. 1995.
[12] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, "Selecting fuzzy if - then rules for classification problems using genetic algorithms," IEEE Trans. Fuzzy Syst., vol. 3, no. 3, pp. 260-270, Aug. 1995.
[13] س. ح. ظهیری، "استخراج قواعد مؤثر برای طبقهبندیکنندههای فازی با استفاده از روش بهینهسازی گروه ذرات،" پانزدهمین کنفرانس مهندسی برق ایران، صص. 165-171، تهران- مرکز تحقیقات مخابرات ایران، اردیبهشت 1386.
[14] S. H. Zahiri and S. A. Seyedin, "Swarm intelligence based classifiers," Int. J. of the Franklin Inst., vol. 28, no. 4, pp. 362-376, Nov. 2007.
[15] J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proc. IEEE Intl. Conf. on Neural Networks IV, pp. 1942-1948, Aug. 1995.
[16] Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization," in Proc. of the 1999 Cong. on Evolutionary Computation, pp. 1945-1950, May 1999.
[17] R. C. Eberhart and Y. Shi, "Tracking and optimizing dynamic systems with particle swarms," in Proc. of the 2001 Congress on Evolutionary Computation, pp. 563-569, Oct. 2001.
[18] R. A. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugen, vol. 7, no. 2, pp. 179-188, Feb. 1936.
[19] University of California, Irvine, via anonymous ftp ftp.ics.uci.edu/pub/machine-learning-databases.
[20] D. J. Strausberger, F. D. Garber, N. F. Chamberlain, and E. K. Walton, "Modeling and performance of HF/OTH radar target classification systems," IEEE Trans. on Aerospace and Electronic Systems, vol. 28, no. 2, pp. 396-402, Apr. 1992.
[21] M. A. Morgan, "Target I.D. using natural resonance, a new concept for future radar systems," IEEE Potential, vol. 3, no. 2, pp. 11-14, Dec. 1993.
[22] N. F. Chamberlain, E. K. Walton, and F. D. Garber, "Radar target identification of aircraft using polarization - diverse features," IEEE Trans. on Aerospace and Electronic Systems, vol. 27, no. 1, pp. 58-66, Jan. 1991.
[23] M. R. Bell and R. A. Grubbs, "JEM modeling and measurement for radar target identification," IEEE Trans. on Aerospace and Electronic Systems, vol. 29, no. 1, pp. 73-87, Jan. 1993.
[24] J. Martin and B. Mulgrew, "Analysis of the theoretical radar returned signal from aircraft propeller blades," in Proc. of the IEEE Int. Radar Conf., pp. 569-572, 1990.
[25] S. H. Zahiri and S. A. Seyedin, "Intelligent particle swarm classifier," Iranian J. of Electrical and Computer Engineering, vol. 4, no. 1, pp. 63-70, Winter-Spring 2005.
[26] Y. Shi, R. Eberhart, Y. Chen, and H. Tanaka, "Implementation of evolutionary fuzzy systems," IEEE Trans. on Fuzzy Systems, vol. 7, no. 2, pp. 56-67, Nov. 1999.