چانهزني هوشمند در بازار با استفاده از یادگیری تقويتي
محورهای موضوعی : مهندسی برق و کامپیوترمحمدعلی سعادتجو 1 , ولی درهمی 2 , فاطمه سعادت جو 3 *
1 - دانشگاه کاشان
2 - دانشگاه یزد
3 - دانشگاه علم و هنر
کلید واژه: بازار الکترونيکي چانهزني یادگیری تقويتي,
چکیده مقاله :
استفاده از تكنيكهاي فناوري اطلاعات در بازارهاي الکترونيکي، پویایی و پيچيدگي سيستم عرضه و تقاضا را بالا برده است. بنابراين بهکارگيري عاملهاي هوشمند جهت خريد و فروش و چانهزني در اين گونه بازارها بهعنوان يک راهکار مؤثر پيشنهاد شده است. الگوريتم یادگیری تقويتي يكي از روشهاي قوي یادگیری عاملهاست که با كمترين اطلاعات ممكن ميتواند بهصورت تعاملي براي آموزش عامل، در راستاي پيشنهاد قيمت بهکار گرفته شود. چانهزني يك مذاكره چالش برانگيز و پيچيده است كه علت آن تنوع متغيرهاي بسيار زياد در روابط عرضه و تقاضا و دانش ناكافي شركتكنندگان در بازار ميباشد. در اين مقاله نحوه بهکارگيري یادگیری تقويتي در مسأله چانهزني در دو بازار مناقصه و مزايده در راستاي بيشينهسازي افزايش سود عامل بيان ميگردد. متغيرهاي حالت، عمل و تابع یادگیری تقويتي براي مسأله چانهزني در بازار به کمک يک مسأله یادگیری تقويتي نمونه فرمولبندي میشوند. با مقايسه روش ارائهشده و يك روش تجربی به اين واقعيت خواهيم رسيد كه عامل آموزشديده، سود به مراتب بيشتري را از يک عامل تجربی کسب مينمايد.
Using Information Technology techniques have been increased complication and dynamicity of supply-and-demand systems like auctions. In this paper, we introduce a novel method by applying Reinforcement Learning (RL) price offer as one of the robust methods of agent learning which can be used in interactive conditions with minimum level of information in auction and reverse auction. Negotiation as one of the challengeable and complicated behaviors is caused an agreement on price in auctions. The main aim of our method is maximizing seller’s and customer’s profits. We formulate seller and customer selection in form of two different RL problems. All of the RL parameters like states, actions, and reinforcement function are defined. Also, we describe an experimental method to compare with our proposed method for proving advantages of our method.
[1] American Cancer Society, Breast Cancer Facts & Figures 2009-2010, Atlanta, 2009.
[2] A. C. Bovik, Handbook of Image and Video Processing, 2nd ed., Elsevier Academic Press, pp. 1195-1217, 2005.
[3] R. M. Rangayyana, F. J. Ayresa, and J. E. L. Desautels, "A review of computer aided diagnosis of breast cancer: toward the detection of subtle signs," J. of the Franklin Institute, vol. 344, no. 3-4, pp. 312-348, May/Jul. 2007.
[4] H. D. Cheng, X. J. Shi, R. Min, L. M. Hu, X. P. Cai, and H. N. Du, "Approaches for automated detection and classification of masses in mammograms," J. of Pattern Recognition, vol. 39, no. 4, pp. 646-668, 2006.
[5] American College of Radiology, ACR BI-RADS-Mammography, Ultrasound & Magnetic Resonance Imaging, 4th ed., American College of Radiology, Reston, VA, 2003.
[6] H. R. Tizhoosh, "Opposition-based learning: a new scheme for machine intelligence," in Proc. of the IEEE, International Conf. on Computational Intelligence for Modeling, Control, and Automation, vol. 1, pp. 695-701, Vienna, Austria, 2005.
[7] M. Ventreca and H. R. Tizhoosh, "Improving the convergence of back propagation by opposite transfer function," in Proc. of Int. Joint Conf. on Neural Networks, pp. 4777-4784, 2006.
[8] H. R. Tizhoosh and M. Ventresca, Oppositional Concepts in Computational Intelligence, Springer, 2008.
[9] F. Saki, A. Tahmasbi, and S. B. Shokouhi, "A novel opposition-based classifier for mass diagnosis in mammography images," in Proc. of the IEEE, 17th Iranian Conf. on Biomedical Eng. ICBME'2010, 4 pp., Isfahan, Iran, 3-4 Nov. 2010.
[10] X. Zhang, X. Gao, and Y. Wang, "MCs detection with combined image features and twin support vector machines," J. of Computers, vol. 4, no. 3, pp. 215-221, Mar. 2009.
[11] A. Tahmasbi, F. Saki, and S. B. Shokouhi, "Classification of benign and malignant masses based on zernike moments," J. of Computers in Biology and Medicine, vol. 41, no. 8, pp. 726-735, 2010.
[12] J. Suckling et al., "The mammographic image analysis society digital mammogram database," Exerpta Medical, Int. Congress Series 1069, pp. 375-378, 1994.
[13] L. M. Bruce and R. R. Adhami, "Classifying mammographic mass shapes using the wavelet transform modulus-maxima method," IEEE Trans. on Medical Imaging, vol. 18, no. 12, pp. 1170-1177, Dec. 1999.
[14] W. Wang, J. E. Mottershead, and C. Mares, "Mode-shape recognition and finite element model updating using the zernike moment descriptor," J. of Mechanical Systems and Signal Processing, vol. 23, no. 7, pp. 2088-2112, Oct. 2009.
[15] W. K. Pratt, Digital Image Processing: PIKS Inside, 3rd Edition, John Wiley & Sons, Ch. 18, 2001.
[16] C. Balleyguier et al., "BIRADSTM classification in mammography," European J. of Radiology, vol. 61, no. 2, pp. 192-194, Feb. 2007.
[17] A. Tahmasbi, F. Saki, and S. B. Shokouhi, "An effective breast mass diagnosis system using Zernike moments," in Proc. 17th Iranian Conf. on Biomedical Engineering, ICBME'2010, 4 pp., Isfahan, Iran, 2010.
[18] A. Tahmasbi, F. Saki, H. Aghapanah, and S. B. Shokouhi, " A novel breast mass diagnosis system based on Zernike moments as shape and density descriptors," in Proc. 18th Iranian Conf. on Biomedical Engineering, ICBME'2011, pp. 100-104, Tehran, Iran, 2011.
[19] K. V. Augustine and H. Dongjun, "Image similarity for rotation invariants image retrieval system," in Proc. of the IEEE, Int. Conf. on Multimedia Computing and System, ICMCS'09, pp. 133-137, 2-4 Apr. 2009.
[20] B. Verma, P. McLeod, and A. Klevansky, "Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer," J. of Expert Systems with Application, vol. 37, no. 4, pp. 3344-3351, Apr. 2010.
[21] F. O. Karray and C. de Silva, Soft Computing and Intelligent Systems Design, Pearson Education Limited, 2004.
[22] J. Bozek, M. Mustra, K. Delac, and M. Grgic, "A survey of image processing algorithms in digital mammography," in Recent Advances in Multimedia Signal Processing and Communication, vol. 231, pp. 631-657, Oct. 2009.
[23] A. Tahmasbi, F. Saki, and S. B. Shokouhi, "Mass diagnosis in mammography images using novel FTRD features," in Proc. of the IEEE, 17th Iranian Conf. on Biomedical Engineering, ICBME'2010, Isfahan, Iran, 5 pp., 3-4 Nov. 2010.
[24] A. M. Abdalla et al., "Breast cancer detection based on statistical textural features classification," in Proc. of the IEEE, 4th Int. Conf. on Innovations in Information Technology, pp. 728-730, 18-20 Nov. 2007.
[25] D. Manrique, J. Rios, and A. Rodriguez - Paton, "Evolutionary system for automatically constructing and adapting radial basis function networks," J. of Neurocomputing, vol. 69, no. 4, pp. 2268-2283, Apr. 2006.
[26] N. R. Mudigonda, R. M. Rangayyan, and J. E. L. Desautels, "Gradient and texture analysis for the classification of mammographic masses," IEEE Trans. on Medical Imaging, vol. 19, no. 10, pp. 1032-1043, Oct. 2000.