يادگيري بلندمدت مبتني بر الگوهاي معنايي با بهرهگيري از اطلاعات يادگيري کوتاهمدت به روش بهبود تابع شباهت در سامانههاي بازيابي تصوير
محورهای موضوعی : مهندسی برق و کامپیوترعصمت راشدی 1 , حسین نظامآبادیپور 2 *
1 - دانشگاه تحصیلات تکمیلی صنعتی کرمان
2 - دانشگاه شهید باهنر کرمان
کلید واژه: بازيابي تصوير يادگيري بلندمدت يادگيري کوتاهمدت الگوهاي معنايي,
چکیده مقاله :
بازيابي معنايي تصوير از مباحث مورد توجه در بازشناسي الگو است. جهت نزديکتر شدن سامانه بازيابي به محتواي معنايي تصاوير از روشهاي يادگيري کوتاهمدت و بلندمدت در قالب بازخورد ربط استفاده ميشود. در دهه اخير استفاده از يادگيري بلندمدت در سامانههاي بازيابي مورد توجه زيادي قرار گرفته است و رويکردهايي در اين زمينه ارائه شده است. در اين مقاله رويکرد جديدي در يادگيري بلندمدت با ارائه روشي براي بيان الگوهاي معنايي ارائه شده است. در اين روش، الگوهاي معنايي بر پايه اطلاعات مستخرج از يادگيري کوتاهمدت مبتني بر بهبود تابع شباهت، تهيه و از اين اطلاعات در بهبود نتايج بازيابي در پرس و جوهاي آينده استفاده ميشود. علاوه بر آن، يک معيار مؤثر تعيين شباهت بين الگوهاي معنايي پيشنهادي و تصاوير براي بازيابي ارائه و روش پيشنهادي در يک پايگاه تصوير با 10000 تصوير آزموده شده است. اين روش با يک روش متداول در يادگيري بلندمدت مقايسه و نتايج ارائه شده است. نتايج آزمايشها، بهبود دقت بازيابی در روش پيشنهادی نسبت به حالت بدون يادگيری بلندمدت و با يادگيری بلندمدت به روش 'iFind' را نشان ميدهد.
In This paper, a new scheme for long term learning in CBIR systems is proposed. In this scheme, semantic templates are extracted from information provided through relevance feedback process for short-term learning which use similarity refinement techniques. This information will be used as semantic templates in future retrieval sessions to improve the precision of the CBIR system. Also, a similarity function is introduced to calculate the similarity between queries and semantic templates. The proposed method is examined on a database with 10000 color images. The experimental results and comparison with ‘iFind’ method, confirm the effectiveness of the proposed method.
[1] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, "Content - based image retrieval at the end of the early years," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1349-1379, Dec. 2000.
[2] S. Antani, R. Kasturi, and R. Jain, "A survey on the use of pattern recognition methods for abstraction, indexing, and retrieval of images and video," Pattern Recognition, vol. 35, no. 4, pp. 945-965, Apr. 2002.
[3] Y. Liu, D. Zhang, G. Lu, and W. Y. Ma, "A survey of content - based image retrieval with high - level semantics," Pattern Recognition, vol. 40, no. 1, pp. 262-282, Jan. 2007.
[4] Y. Rui, S. Huang, M. Ortega, and S. Mehrotra, "Relevance feedback: a power tool for interactive content - based image retrieval," IEEE Trans. on Circuits and Video Technology, vol. 8, no. 5, pp. 25-36, Sep. 1998.
[5] X. Qi, S. Barrett, R. Chang, “A noise-resilient collaborative learning approach to content-based image retrieval”, Int. Journal of Intelligent Systems, vol. 26, no. 12, pp. 1153-1175, Dec. 2011.
[6] D. Djordjevic and E. Izquierdo, "An object- and user- driven system for semantic - based image annotation and retrieval," IEEE Trans. on Circuits and Systems for Technology, vol. 17, no. 3, pp. 313-323, Mar. 2007.
[7] P. C. Cheng, B. C. Chien, H. R. Ke, and W. P. Yang, "A two - level relevance feedback mechanism for image retrieval," Expert Systems with Applications, vol. 34, no. 3, pp. 2193-2200, Apr. 2008.
[8] ا. شمسي، ح. نظامآباديپور، س. سريزدي و ا. کبير، "روشي جديد در بازخورد ربط براي بازيابي تصوير بر اساس محتوا،" پانزدهمين کنفرانس ملي سالانه انجمن کامپيوتر ايران، جلد 1، 4 ص.، اسفند 88.
[9] K. Porkaew, K. Chakrabarti, and S. Mehrotra, "Query refinement for multimedia similarity retrieval in MARS," in Proc. of the ACM International, Multimedia Conf., vol. 1, pp. 235-238, Oct. 1999.
[10] J. J. Rocchio, "Relevance feedback in information retrieval," in: Salton, G. (Ed.), The SMART Retrieval System: Experiments in Automatic Document Processing, Prentice Hall, pp. 313-323, 1971.
[11] M. Broilo and F. G. B. D. Natale, "A stochastic approach to image retrieval using relevance feedback and particle swarm optimization," IEEE Trans. on Multimedia, vol. 12, no. 4, pp. 267-277, Jun. 2010.
[12] S. Salvador and P. Chan, Determining the Number of Clusters/Segments in Hierarchical Custering/Segmentation Algorithms, Technical Report CS-2003-18, Florida Institute of Technology, 2003.
[13] D. H. Kim, C. W. Chung, and K. Barnard, "Relevance feedback using adaptive clustering for image similarity retrieval," The J. of Systems and Software, vol. 78, no. 1, pp. 9-23, Oct. 2005.
[14] M. Arevalillo - Herraez, F. J. Ferri, and S. Moreno - Picot, "Distance - based relevance feedback using a hybrid interactive genetic algorithm for image retrieval," Applied Soft Computing, vol. 11, no. 2, pp. 1782-1791, Mar. 2011.
[15] A. S. Hosseini, Semantic Image Retrieval Using Relevance Feedback and Transaction Logs, Ph. D. Thesis, Louisiana State University, 2007.
[16] W. Jiang, G. Er, Q. Dai, and J. Gu, "Hidden annotation for image retrieval with long - term relevance feedback learning," Pattern Recognition, vol. 38, no. 11, pp. 2007-2021, Nov. 2005.
[17] M. Li, Z. Chen, and H. J. Zhang, "Statistical correlation analysis in image retrieval," Pattern Recognition, vol. 35, no. 12, pp. 2687-2693, Dec. 2002.
[18] M. Koskela and J. Laaksonen, "Using long - term learning to improve efficiency of content - based image retrieval," in Proc. of the Third Int. Workshop on Pattern Recognition in Information Systems, PRIS'03, vol. 1, pp. 72-79, Oct. 2003.
[19] H. C. Hong, Learning Based on Relevance Feedback in Content - Based Image Retrieval, Master of Philosophy Thesis, The Chinese University of Hong Kong, 2004.
[20] X. He, O. King, W. Y. Ma, M. Li, and H. J. Zhang, "Learning a semantic space from user's relevance feedback for image retrieval," IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 1, pp. 39-48, Jan. 2003.
[21] J. Han, M. Li, H. Zhang, and L. Guo, "A memorization learning model for image retrieval," in Proc. of Int. Conf. on Image Processing, ICIP'03, vol. 3, pp. 605-608, Sep. 2003.
[22] Y. Lu, H. Zhang, L. Wenyin, and C. Hu, "Joint semantics and feature based image retrieval using relevance feedback," IEEE Trans. on Multimedia, vol. 5, no. 3, pp. 339-347, Sep. 2003.
[23] S. Barrett, Content-Based Image Retrieval: A Short Term and Long Term Learning Approach, Stevens Institute of Technology, Technical Report 2007, http://digital.cs.usu.edu/~xqi/ Teaching/REU07/Website/Samuel/SamFinalPaper.pdf.
[24] H. Nezamabadipour and E. Kabir, "Concept learning by fuzzy k - NN classification and relevance feedback for efficient image retrieval," Expert Systems with Applications, vol. 36, no. 3, pp. 5948-5954, Apr. 2009.
[25] B. Bhanu and A. Dong, "Concept learning with fuzzy clustering and relevance feedback," Engineering Application of Artificial Intelligence, vol. 15, no. 2, pp. 123-138, Apr. 2002.
[26] M. Cord, P. H. Gosselin, and S. P. Foliguet, "Stochastic exploration and active learning for image retrieval," Image and Vision Computing, vol. 25, no. 1, pp. 14-23, Jan. 2007.
[27] A. Lakdashti, M. S. Moint, and K. Badiet, "A novel semantic - based image retrieval method," in Proc. 10th Inte. Conf. on Advanced Communication Technology, ICACT, vol. 2, pp. 969-974, Feb. 2008.
[28] M. E. ElAlami, "Supporting image retrieval framework with rule base system," Knowledge-Based Systems, vol. 24, no. 2, pp. 331-340, Mar. 2011.
[29] S. F. Chang, W. Chen, and H. Sundaram, "Semantic visual templates: linking visual features to semantics," in Proc. Int.Conf. on Image Processing, ICIP'98, Workshop on Content Based Video Search and Retrieval, vol. 3, pp. 531-534, Oct. 1998.
[30] J. R. Smith and C. S. Li, "Decoding image semantics using composite region templates," IEEE Workshop on Content - Based Access of Image and Video Libraries, CBAIVL - 98, vol. 1, pp. 9-13, Jun. 1998.
[31] Y. Zhuang, X. Liu, and Y. Pan, "Apply semantic template to support content - based image retrieval," in Proc. of IS&T and SPIE Storage and Retrieval for Media Databases, vol. 1, pp. 23-28, San Jose, California, US, Jan. 2000.
[32] P. Clough, M. Grubinger, A. Hanbury, and H. Muller, "Overview of the imageclef 2007 photographic retrieval task," in CLEF 2007 Workshop, Budapest, Hungary, 2008.
[33] J. Winn, A. Criminisi, and T. Minka, "Object categorization by learned universal visual dictionary," in Proc. 10th Int. Conf. on Computer Vision, ICCV, vol. 2, pp. 1800-1807, Beijing, China, Jan. 2005.
[34] J. Z. Wang, J. Li, and G. Wiederhold, "SIMPLIcity: semantic sensitive integrated matching for picture libraries," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no. 9, pp. 947-963, Sep. 2001.
[35] B. S. Manjunath, P. Salembier, and T. Sikora, Introduction to MPEG-7: Multimedia Content Description Standard, New York: Wiley, 2001.
[36] S. F. Chang, T. Sikora, and A. Puri, "Overview of MPEG-7 Standard," IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 6, pp. 688-695, Jun. 2001.