طراحي کنترلکنندههاي مد لغزشي انتگرالي-تناسبي براي سيستمهاي فوق آشوب با در نظر گرفتن عدم قطعيت، اغتشاش و وروديهاي کنترلي غير خطي
محورهای موضوعی : مهندسی برق و کامپیوترعلی ابویی 1 * , محمدرضا جاهد مطلق 2 , زهرا رحمانی 3
1 - دانشگاه علم و صنعت ايران
2 - دانشگاه علم و صنعت ایران
3 - دانشگاه صنعتي نوشيرواني بابل
کلید واژه: بردار سطوح لغزشي سيستم فوق آشوب شرط رسيدن کنترل مد لغزشي ورودی کنترلي غير خطي,
چکیده مقاله :
در این مقاله کنترل مقاوم يک سیستم فوق آشوب جديد با در نظر گرفتن عدم قطعیت، اغتشاش خارجی و ورودیهای کنترلی غیر خطی مورد بررسی قرار خواهد گرفت. اهداف کنترلي سيستم فوق آشوب، شامل پايدارسازي ديناميک اين سيستم در حضور وروديهاي کنترلي غير خطي، عدم قطعيت و همچنين تضعيف اغتشاش وارد بر سيستم فوق آشوب ميباشد. براي تضعيف اغتشاش وارد بر سيستم فوق آشوب، معيار عملکردي تعريف در این مقاله کنترل مقاوم يک سیستم فوق آشوب جديد با در نظر گرفتن عدم قطعیت، اغتشاش خارجی و ورودیهای کنترلی غیر خطی مورد بررسی قرار خواهد گرفت. اهداف کنترلي سيستم فوق آشوب، شامل پايدارسازي ديناميک اين سيستم در حضور وروديهاي کنترلي غير خطي، عدم قطعيت و همچنين تضعيف اغتشاش وارد بر سيستم فوق آشوب ميباشد. براي تضعيف اغتشاش وارد بر سيستم فوق آشوب، معيار عملکردي تعريف گرديده است که روش ارائهشده بايد اين معيار را برآورده سازد. براي برآورده ساختن اهداف تعيينشده، روش کنترل مد لغزشی با تعریف سه سطح سوئيچينگ انتگرالي - تناسبي جداگانه، مورد استفاده قرار ميگيرد و پایداری روش کنترلی ارائهشده با استفاده از تئوری لیاپانوف به اثبات ميرسد. نتایج شبیهسازی کامپیوتری نشان ميدهند که کنترلکنندههای طراحی شده، کارایی بالایی در برآورده ساختن اهداف کنترلي تعيين شده دارند.
In this paper, robust controllers for a new hyperchaotic system are investigated in the presence of uncertainty, disturbance and nonlinear control inputs. The controllers are designed by considering two major goals: first to stabilize the hyperchaotic system in the presence of uncertainties, disturbance and nonlinear control inputs; and second, to guarantee the prescribed disturbance attenuation, considering the defined performance index for it. Sliding mode control by defining three proportional integral switching surfaces is used to reach mentioned goals. Numerical simulations are used to exhibit the feasibility and performance of the proposed method.
[1] O. E. Rössler, "An equation for hyperchaos," Physics Letters A, vol. 71, no. 2, pp. 155-157, Apr. 1979.
[2] Y. Li, W. Tang, and G. Chen, "Hyperchaos evolved from the generalized lorenz equation," Int. J. of Circuit Theory and Applications, vol. 33, no. 4, pp. 235-251, Jul 2005.
[3] T. Gao, G. Chen, Z. Chen, and S. Chen, "The generation and circuit implementation of a new hyperchaos upon Lorenz system," Physics Letters A, vol. 361, no. 1, pp. 78-86, Jan. 2007.
[4] C. Wang, X. Zhang, Y. Zheng, and Y. Li, "A new modified hyperchoatic Lü system," Physica A: Statistical Mechanics and Its Applications, vol. 371, no. 2, pp. 260-272, Nov. 2006.
[5] Y. Li, W. Tang, and G. Chen, "Generating hyperchaos via state feedback control," Int. J. of Bifurcation and Chaos, vol. 15, no. 10, pp. 3367-3375, Oct. 2005.
[6] T. Gao, Z. Chen, Z. Yuan, and G. Chen, "A hyperchaos generated from chen’s system," Int. J. of Modern Physics C, vol. 17, no. 4, pp. 471-478, Jul. 2006.
[7] Z. Chen, Y. Yuang, G. Qi, and Z. Yuan, "A novel hyperchaos system only with one equilibrium," Physics Letters A, vol. 360, no. 6, pp. 696-701, Jan. 2007.
[8] W. Wu, Z. Chen, and Z. Yuan, "The evolution of a novel four -dimensional autonomous system: among 3 - torus, limit cycle, 2 -torus, chaos, and hyperchaos," Chaos, Solitons, and Fractals, vol. 39, no. 5,pp. 2340-2356, Mar. 2009.
[9] Y. Li, G. Chen, and W. Tang, "Controlling a unified chaotic system to hyperchaotic," IEEE Trans. Circuit System II, vol. 52, no. 4, pp. 204-207, Apr. 2005.
[10] ع. ابويي، م. ر. جاهد مطلق و ز. رحماني چراتي، "ارائه يک سيستم آشوبناک بعد بالاي جديد همراه با يک نقطه تعادل و پايدارسازي آن با استفاده از فيدبک حالت خطي،" مجله کنترل، جلد 3، شماره 1، صص. 46-37، بهار 1388.
[11] G. Perez and H. Cerdeira, "Extracting messages masked by chaos," Physical Review Letters, vol. 74, no. 1, pp.1970-1973, Mar. 1995.
[12] L. Pecora, "Hyperchaos harnessed," Physics World, vol. 9, no. 1, pp. 17-18, May. 1996.
[13] A. Genys, A. Tamasevicius, and A. Bazailiauskas, "Hyperchaos in coupled colpitts oscillators," Chaos, Solitons, and Fractals, vol. 17, no. 2, pp. 349-353, Jul. 2003.
[14] S. Cincotti and S. Stefano, "Complex dynamical behaviors in two non - linearly coupled chua's circuits," Chaos, Solitons, and Fractals, vol. 21, no. 3, pp. 633-641, Jul. 2004.
[15] J. P. Goedgebuer, L. Larger, and H. Porle, "Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode," Physical Review Letters, vol. 80, no. 10, pp. 2249-2252, Mar. 1998.
[16] J. A. Laoye, U. E. Vincent, and S. O. Kareem, "Chaos control of 4D chaotic systems using recursive backstepping nonlinear controller," Chaos, Solitons, and Fractals, vol. 39, no. 1, pp. 356-362, Jan. 2009.
[17] F. Q. Dou, J. A. Sun, W. S. Duan, and K. P. Lü, "Controlling hyperchaos in the new hyperchaotic system," Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 552-559, Feb. 2009.
[18] Y. Y. Hou, T. L. Liao, and J. J. Yan, "H∞ synchronization of chaotic systems using output feedback control design," Physica A: Statistical Mechanics and its Applications, vol. 379, no. 1, pp. 81-89, Jun. 2007.
[19] W. Jiang, G. G. Qiao, and D. Bin, "H∞ variable universe adaptive fuzzy control for chaotic system," Chaos, Solitons, and Fractals, vol. 24, no. 4, pp. 1075-1086, May 2005.
[20] H. Guo, S. Lin, and J. Liu, "A radial basis function sliding mode controller for chaotic Lorenz system," Physics Letters A, vol. 351, no. 4, pp. 257-261, Mar. 2006.
[21] H. T. Yau and C. L. Chen, "Chattering-free fuzzy sliding - mode control strategy for uncertain chaotic systems," Chaos, Solitons, and Fractals, vol. 30, no. 3, pp. 709-718, Nov. 2006.
[22] M. J. Jang, C. L. Chen, and C. K. Chen, "Sliding mode control of hyperchaos in Rössler systems," Chaos, Solitons, and Fractals, vol. 14, no. 9, pp. 1465-1476, Dec. 2002.
[23] T. Y. Chiang and M. L. Hung, "Sliding mode control for uncertain unified chaotic systems with input nonlinearity," Chaos, Solitons, and Fractals, vol. 34, no. 3, pp. 437-442, Oct. 2007.
[24] H. Wang, Z. Z. Han, Q. Y. Xie, and W. Zhang, "Sliding mode control for chaotic systems based on LMI," Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1410-1417, Apr. 2009.
[25] T. L. Liao, J. J. Yan, and Y. Y. Hou, "Robust chaos suppression for the family of nonlinear chaotic systems with noise perturbation," Nonlinear Analysis: Theory, Methods, and Applications, vol. 69, no. 1, pp. 14-23, Jul. 2008.
[26] S. Dadras, H. R. Momeni, and V. J. Majd, "Sliding mode control for uncertain new chaotic dynamical system," Chaos, Solitons, and Fractals, vol. 41, no. 4, pp. 1857-1862, Aug. 2009.
[27] J. J. Yan, "H∞ controlling hyperchaos of the Rössler system with input nonlinearity," Chaos, Solitons, and Fractals, vol. 21, no. 2, pp. 283-293, Jul. 2004.