یک الگوریتم جدید مسیریابی بهینه سبز در شبکه های انتقال داده
محورهای موضوعی : مهندسی برق و کامپیوترمحسن حیدریان 1 * , فریبا درویشیان 2
1 - دانشكده فناوري اطلاعات و مهندسي كامپيوتر، دانشگاه شهيد مدني آذربايجان، ایران
2 - دانشکده فناوری اطلاعات و مهندسی کامپیوتر، دانشگاه شهید مدنی آذربایجان، ایران
کلید واژه: شبکههای کامپیوتری سبز, استاندارد سبز, مسیریابی بهینه, مدلسازی خطی, مصرف بهینه منابع,
چکیده مقاله :
تولید انرژی از منابع تجدیدپذیر مانند برق- آبی که مقدار 2 COرا کاهش میدهد، انرژی پاک نامیده میشود. امروزه فناوریها و روشهایی که مصرف انرژی در شبکههای کامپیوتری و تولید 2 COدر محیط زیست را کاهش میدهند، شبکه سبز نامیده میشوند. اکنون مصرف زیاد انرژی در شبکهها و تولید روزافزون 2CO، یک چالش مهم جهانی است. این تحقیق سه اصل مهم بهینهسازی، تخلیهنکردن منابع و هدرندادن منابع در استانداردهای شبکه سبز را تحلیل میکند و نشان میدهد که الگوریتمهای مسیریابی بهینه با کارایی بالا، همواره استانداردهای سبز در شبکهها را تضمین نمیکنند و باید اصول بهینگی و سبزبودن را تلفیق نمود. لذا با تلفیق اصول سبزبودن و بهینهسازی خطی، یک الگوریتم مسیریابی بهینه سبز جدید در شبکههای کامپیوتری ارائه میشود. در ادامه، سه نوع الگوریتم مسیریابی USCP، OUMRو OMMR مطابق با استانداردهای سبز تحلیل میشوند و ثابت میگردد که علیرغم بهینهبودن، سبز نیستند. سپس بر اساس نقاط ضعف و قوت این روشها، الگوریتم مسیریابی بهینه سبز جدیدی ارائه میشود. نتایج شبیهسازی و مقایسهها نشان میدهند که روش جدید ضمن افزایش کارایی شبکه، معیارهای سبز انتقال داده را نیز بهبود میبخشد.
The production of energy from renewable sources, such as the energy from electricity-water, which reduces the amount of CO2, is called clean energy. Today, technologies and methods that reduce energy consumption in computer networks and Co2 production in the environment are called green networks. Now, high consumption of energy in networks and increasing production of Co2 is an important global challenge. This research analyzes the three important principles of optimization, not draining resources and not wasting resources from green network standards. This research shows that high-performance optimal routing algorithms do not always guarantee green standards in networks, and the principles of optimality and greenness must be combined. Therefore, by combining the principles of being green and the principles of linear optimization, a new green optimal routing algorithm in computer networks is presented. Next, three types of USCP, OUMR and OMMR routing algorithms are analyzed according to green standards and it is proven that they are not green despite being optimal. Then, based on the strengths and weaknesses of these methods, a new green optimal routing algorithm is presented. The simulation results and comparisons show that the new method, while increasing the network efficiency, also improves the green standards of data transmission.
[1] A. Mihailovic, B. Abrishamchi, and M. Farhoudi, "A comprehensive multi-topology minimum set cover link-state routing approach for emerging random all-IP access network ntopologies," J. of Computer Networks, vol. 219, Article ID: 109418, 2022.
[2] A. Y. Romanov, E. V. Lezhnev, and A. Y. Glukhikh, "Development of routing algorithms in networks-on-chip based on two-dimensional optimal circulant topologies," J. of Heliyon, vol. 6, no. 1, Article ID: e03183, Jan. 2020.
[3] Z. Basit, M. Tabassum, T. Sharma, and M. Furqan, "Performance analysis of OSPF and EIGRP convergence through IPsec tunnel using multi-homing BGP connection," Materials Today: Proceedings, vol. 62, no. 7, pp. 4853-4861, Dec. 2022.
[4] D. Liu, B. Barber, and L. DiGrande, CHAPTER 5 - Routing Protocols: RIP, RIPv2, IGRP, EIGRP, OSPF, Cisco CCNA/CCENT Exam 640-802, 640-822, 640-816 Preparation Kit 2009, pp. 169-196.
[5] H. Wu and Y. Gao, "An ant colony optimization based on local search for the vehicle routing problem with simultaneous pickup-delivery and time window," J. of Applied Soft Computing, vol. 139, no. C, Article ID: 110203, May 2023.
[6] I. L. Cherif, L. Zitoune, and V. Vèque, "Energy efficient routing for wireless mesh networks with directional antennas: when Q-learning meets ant systems," J. of Ad Hoc Networks, vol. 121, Article ID: 102589, Oct. 2021.
[7] A. Isazadeh and M. Heydarian, "Optimal multicast multichannel routing in computer networks," J. of Computer Communications, vol. 31, no. 17, pp. 4149-4161, Nov. 2008.
[8] M. Garvey, R. G. Rieksts, B. Q. Ventura, and J. A. Ahn, "Binary linear programming models for robust broadcasting in communication networks," J. of Mathematics, vol. 204, pp. 173-184, May 2016.
[9] J. Costa, J. M. Paniago, P. P. Andrade, J. Noronha, and T. F. Vieira, "Integer linear programming formulations for the variable data rate and variable channel bandwidth scheduling problem in wireless networks," J. of Computer Networks, vol. 165, Article ID: 106939, Dec. 2019.
[10] Y. Liu and Q. Chen, "Collaborated eco-routing optimization for continuous traffic flow based on energy consumption difference of multiple vehicles," J. of Energy, vol. 274, Article ID: 127277, Jul. 2023.
[11] M. M. Nasiri, H. Mousavi, and S. N. Abarghooee, "A green location-inventory-routing optimization model with simultaneous pickup and delivery under disruption risks," Decision Analytics J., vol. 6, Article ID: 100161, Mar. 2023.
[12] S. Chaurasia, K. Kumar, and N. Kumar, "MOCRAW: a meta-heuristic optimized cluster head selection based routing algorithm for WSNs," J. of Ad Hoc Networks, vol. 141, Article ID: 103079, Mar. 2023.
[13] A. Taneja, S. Rani, and S. Garg, "Energy aware resource control mechanism for improved performance in future green 6G networks," J. of Computer Networks, vol. 217, Article ID: 109333, Nov. 2022.
[14] S. Kamble, P. Bhilwar, and B. R. Chandavarkar, "Novel fuzzy-based objective function for routing protocol for low power and lossy networks," J. of Ad Hoc Networks, vol 144, Article ID: 103150, May 2023.
[15] R. Tirumalasetti and S. K. Singh, "Automatic dynamic user allocation with opportunistic routing over vehicles network for intelligent transport system," J. of Sustainable Energy Technologies and Assessments, vol. 57, Article ID: 103195, Jun. 2023.
[16] B. R. Dawadi, D. B. Rawat, S. R. Joshi, and M. M. Keitsch, "Recommendations for energy efficient SoDIP6 network," in Proc. Int. Conf. on Computing, Networking and Communications, ICNC'19, pp. 714-718, Honolulu, HI, USA, 18-21 Feb. 2019.
[17] C. Kaur and S. Kaur, "An energy efficient resource allocation policy in cloud infrastructure," International J. of Engineering Science, vol. 31, no. ???, pp. ???-???, Feb. 2024.
[18] G. Koutsandria, V. DiValerio, D. Spenza, S. Basagni, and C. Petrioli, "Wake-up radio-based data forwarding for green wireless networks," J. of Computer Communications, vol. 160, pp. 172-185, Sept. 2020.
[19] Y. Wu, B. Guo, Y. Shen, J. Wang, and X. Liu, "A cross-layer optimization and design approach under QoS constraints for green IP over WDM networks," J. of Computer Networks, vol. 76, pp. 177-190, May 2015.
[20] C. Singhal, D. K. Jain, A. Tarable, and A. Nayyar, "Special issue on smart green computing for wireless sensor networks," J. of Computer Communications, vol. 190, no. C, pp. 216-218, Jun. 2022.
[21] S. Kumar, et al., "Towards green communication in wireless sensor network: GA enabled distributed zone approach," J. of Ad Hoc Networks, vol. 93, Article ID: 101903, Oct. 2019.
[22] F. Andreagiovanni, R. G. Garroppo, and M. G. Scutellà, "Green design of wireless local area networks by multiband robust optimization," J. of Electronic Notes in Discrete Mathematics, vol. 64, pp. 225-234, Feb. 2018.
[23] S. Abbasi and H. A. Choukolaei, "A systematic review of green supply chain network design literature focusing on carbon policy," Decision Analytics J., vol. 6, Article ID: 100189, Mar. 2023.
[24] S. Dong, G. Ren, Y. Xue, and K. Liu, "Urban green innovation's spatial association networks in China and their mechanisms," J. of Sustainable Cities and Society, vol. 93, Article ID: 104536, Jun. 2023.
[25] L. Melander and A. Arvidsson, "Green innovation networks: a research agenda," J. of Cleaner Production, vol. 357, no Article ID: 131926, May 2022.
[26] C. H. Hsu and N. M. Eshwarappa, "Green communication approach for the smart city using renewable energy systems," J. of Energy Reports, vol. 8, pp. 9528-9540, Nov. 2022.
[27] B. T. Geetha, P. S. Kumar, and B. S. Bama, "Green energy aware and cluster based communication for future load prediction in IoT," J. of Sustainable Energy Technologies and Assessments, vol. 52, no. C, Article ID: 102244, Aug. 2022.
[28] N. Drouant, E. Rondeau, J. P. Georges, and F. Lepage, "Designing green network architectures using the ten commandments for a mature ecosystem," J. of Computer Communications, vol. 42, pp. 38-46, Apr. 2014.
[29] A. Isazadeh and M. Heydarian, "Optimal multicast multichannel routing in computer networks," Computer Communications, vol. 31, no. 17, pp. 4149-4161, Nov. 2008.
[30] G. L. Xue, "Optimal multichannel data transmission in computer networks," J. of Computer Communications, vol. 26, no. 7, pp. 759-765, May 2003.
[31] L. R. Ford and D. R. Fulkerson, "Constructing maximal dynamic flows from static flows," J. of Operation Reasearch, vol. 6, no. 3, pp. 419-433, Sept./Jun. 1958.
[32] D. Lin, Z. Lin, L. Kong, and Y. L. Guan, "CMSTR: a constrained minimum spanning tree based routing protocol for wireless sensor networks," J. of Ad Hoc Networks, vol. 146, Article ID: 103160, Jul. 2023.
[33] S. Babu and A. R. K. Parthiban, "DTMR: an adaptive distributed tree-based multicast routing protocol for vehicular networks," J. of Computer Standards & Interfaces, vol. 79, Article ID: 103551, Jan. 2022.
[34] Q. Liu, H. P. Ren, R. J. Tang, and J. L. Yao, "Optimizing co-existing multicast routing trees in IP network via discrete artificial fish school algorithm," J. of Knowledge-Based Systems, vol. 191, Article ID: 105276, Mar. 2020.