طراحی کنترلکننده مقاوم بهینه برای فرایند شارژ خودروی الکتریکی در حضور عدم قطعیت
محورهای موضوعی : مهندسی برق و کامپیوترمهسا کرمی 1 , روح الله برزمینی 2 * , رضا شریفی 3
1 - دانشگاه آزاد اسلامی واحد تهران مرکزی
2 - دانشگاه آزاد اسلامی واحد تهران مرکزی
3 - دانشگاه آزاد اسلامی واحد تهران غرب
کلید واژه: خودروی الکتریکی, شارژ بیسیم, کنترل مقاوم, عدم قطعیت, ایستگاه شارژ,
چکیده مقاله :
فناوری انتقال توان بی سیم که با عناوینی مانند انتقال توان بدون تماس و انتقال توان به روش تزویج مغناطیسی نیز شناخته می شود، انتقال توان را به گونه ای ایمن و قابل اطمینان انجام می دهد که نیازی به اتصال مكانیكی مابین منبع و بار نباشد. در این روش، انتقال توان به روش بیسیم با استفاده از تزویج القای تشدیدی صورت میپذیرد. با عملکرد مبدل در حالت تشدید، انتقال مقدار قابل توجهی از توان در یک فاصله هوایی چند 10 سانتیمتری، در حالی که بازده سیستم زیاد میباشد و تنش ولتاژ و جریان مبدل در حد معقول است، امکانپذیر خواهد بود. در این مقاله با ارائه روش مبتنی بر کنترل مقاوم H- بینهایت و الگوریتمهای فراابتکاری به بهبود فرایند شارژ خودروهای الکتریکی با در نظر گرفتن شرایط عدم قطعیت میپردازیم. نتايج حاصل از شبيهسازي، نشاندهنده عملكرد مناسبتر کنترلر پيشنهادي در مقايسه با کنترلرهای دیگر است. همچنین در این مقاله اثر اتصال ایستگاه شارژ خودروهای الکتریکی به شبکه توزیع با ملاحظه سیستمهای برنامهریزی بهینه شارژ و دشارژ برای حداکثرسازی سود اقتصادی خودروها و ایستگاه شارژ بررسی شد. در برنامهریزی پیشنهادی، بهترین برنامه برای شارژ و دشارژ خودروها به منظور حداکثرسازی سود خود بر پایه الگوریتم ژنتیک استخراج شده است. مطابق نتایج شبیهسازی، برنامهریزی بهینه شارژ و دشارژ به کاهش ارزش تلفات به انرژی کل شبکه به ازای بارگذاری ایستگاه در برخی شینها منجر شده است، به طوری که اهداف شبکه مانند تلفات و شاخص انحراف ولتاژ، حداقل و شاخص پایداری ولتاژ حداکثر شده است. در این مطالعه، حداقلسازی تلفات، انحراف ولتاژ و همچنین حداکثرسازی شاخص پایداری ولتاژ، بررسی شده و مکان بهینه ایستگاه با در نظر گرفتن این اهداف به همراه سود ایستگاه و خودروها به دست آمده است. مطابق با نتایج، با برنامهریزی شارژ و دشارژ خودروها علاوه بر تأمین شارژ مورد نیاز، سود ایستگاه و خودروها نیز افزایش یافته است.
Wireless power transmission technology with titles such as contactless power transmission, magnetic coupling power transfer, etc.are known and in fact, this method safely and reliably transmits power in such a way that does not require a mechanical connection between the source and the load. In this method, power transmission is done wirelessly using resonance induction coupling. By operating the transducer in the resonant mode, it will be possible to transfer a significant amount of power over an air distance of a few tens of centimeters, while the system efficiency is high and the voltage and current stress of the transducer are reasonable. In this paper, by presenting a method based on robust control and meta-heuristic algorithms, we improve the charging process of electric vehicles by considering uncertainty conditions. The simulation results show the better performance of the proposed controller compared to other controllers. Also, in this paper, the effect of connecting the charging station of electric vehicles to the distribution network is investigated by considering the optimal charging and discharging scheduling systems to maximize the economic profit of the vehicles and the charging station. In the proposed method, the best program for charging and discharging cars in order to maximize their profit is extracted based on genetic algorithm. According to the simulation results, optimal charging and discharging planning has reduced the value of losses to the total network energy to load the station in some trains, so that network targets such as losses and voltage deviation index are minimized and voltage stability index is maximized. In this study, minimization of losses, voltage deviation as well as maximization of voltage stability index have been investigated and the optimal location of the station has been obtained by considering these goals along with the profit of the station and vehicles. Finally, according to the results, with the planning of charging and discharging cars, in addition to providing the required charge, the profit of the station and cars has also increased.
[1] K. Parmesh, R. P. Neriya, and M. V. Kumar, "Wireless charging system for electric vehicles," International J. of Vehicle Structures and Systems, vol. 9, no. 1, pp. 23-26, Feb. 2017.
[2] I. Rahman, P. M. Vasant, B. S. M. Singh, M. Abdullah-Al-Wadud, and N. Adnan, "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, vol. 58, pp. 1039-1047, May 2016.
[3] N. B. Xuan, D. M. Vilathgamuwa, G. H. B. Foo, W. Peng, A. Ong, U. K. Madawala, and D. N. Trong, "An efficiency optimization scheme for bidirectional inductive power transfer systems," IEEE Trans. Power Electron, vol. 30, no. 11, pp. 6310-6319, Dec. 2014.
[4] I. Hwang, Y. J. Jang, Y. D. Ko, and M. S. Lee, "System optimization for dynamic wireless charging electric vehicles operating in a multiple-route environment," IEEE Trans. on Intelligent Transportation Systems, vol. 19, no. 6, pp. 1709-1726, Jun. 2018.
[5] N. B. Xuan, G. Foo, A. Ong, D. M. Vilathgamuwa, and U. K. Madawala, "Efficiency optimization for bidirectional IPT system," in Proc. of the IEEE Transportation Electrification Conf. and Expo, ITEC’14, 5 pp., Dearborn, MI, USA, 15-18 Jun. 2014.
[6] M. Bojarski, E. Asa, K. Colak, and D. Czarkowski, "Analysis and control of multiphase inductively coupled resonant converter for wireless electric vehicle charger applications," IEEE Trans. on Transportation Electrification, vol. 3, no. 2, pp. 312-320, Jun. 2017.
[7] X. Z. Wei, Z. S. Wang, and H. F. Dai, "A critical review of wireless power transfer via strongly coupled magnetic resonances," Energies, vol. 7, no. 7, pp. 4316-4341, Jul. 2014.
[8] Z. Wang, X. Wei, and H. Dai, "Design and control of a 3 kW wireless power transfer system for electric vehicles," Energies, vol. 9, no. 1, Article ID: 10, 18 pp., Dec. 2015.
[9] Y. Geng, B. Li, Z. Yang, F. Lin, and H. Sun, "A high efficiency charging strategy for a super capacitor using a wireless power transfer system based on inductor/capacitor/capacitor (LCC) compensation topology," Energies, vol. 10, no. 1, Article ID: 135, 17 pp., Jan. 2017.
[10] T. Kan, T. D. Nguyen, J. C. White, R. K. Malhan, and C. C. Mi, "A new integration method for an electric vehicle wireless charging system using LCC compensation topology: analysis and design," IEEE Trans. on Power Electronics, vol. 32, no. 2, pp. 1638-1650, Feb. 2017.
[11] S. Li and C. C. Mi, "Wireless power transfer for electric vehicle applications," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 4-17, Mar. 2015.
[12] F. Musavi and W. Eberle, "Overview of wireless power transfer technologies for electric vehicle battery charging," IET Power Electron, vol. 7, no. 1, pp. 60-66, Jan. 2014.
[13] G. Sultana, T. R. Deepak, P. Bhushan, M. Azeem, and G. N. Swathi, "Design and implementation of wireless power transfer charging system on miniature model," SSRG International J. of Electrical and Electronics Engineering (SSRG-IJEEE), vol. 3, no. 4, pp. 27-31, Mar. 2016.
[14] D. H. Tran, V. B. Vu, and W. Choi, "Design of a high efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles," IEEE Trans. on Power Electronics, vol. 33, no. 1, pp. 175-187, Jan. 2018.
[15] L. Sun, H. Tang, and Y. Zhang, "Determining the frequency for load-independent output current in three-coil wireless power transfer system," Energies, vol. 8, pp. 9719-9730, Sept. 2015.
[16] X. D. T. Garcia, J. Vazquez, and P. Roncero-Sanchez, "Design, implementation issues and performance of an inductive power transfer system for electric vehicle chargers with series-series compensation," IET Power Electron, vol. 8, no. 10, pp. 1920-1930, Jul. 2015.
[17] A. Swain, S. Devarakonda, and U. Madawala, "Modelling, sensitivity analysis and controller synthesis of multi pick-up bi-directional inductive power transfer systems," IEEE Trans. on Industrial Informatics, vol. 10, no. 2, pp. 1372-1380, May 2014.
[18] A. El-Zonkoly and L. dos Santos Coelho, "Optimal allocation, sizing of PHEV parking lots in distribution system," International J. of Electrical Power & Energy Systems, vol. 67, pp. 472-477, May 2015.
[19] S. A. Birrell, D. Wilson, C. P. Yang, G. Dhadyalla, and P. Jennings, "How driver behaviour and parking alignment affects inductive charging systems for electric vehicles," Transportation Research Part C: Emerging Technologies, vol. 58, pp. 721-731, May 2015.
[20] M. Honarmand, A. Zakariazadeh, and S. Jadid, "Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid," Energy Conversion and Management, vol. 86, pp. 745-755, Oct. 2014.
[21] A. Zakariazadeh, S. Jadid, and P. Siano, "Integrated operation of electric vehicles and renewable generation in a smart distribution system," Energy Conversion and Management, vol. 89, pp. 99-110, Jan. 2015.
[22] W. Zhang, X. Fan, Y. Zheng, and X. Zhang, "Application of sliding mode control with leakage loop modulation in dynamic wireless charging system of electric vehicle," in Proc. 12th Int. Symp. on Computational Intelligence and Design, ISCID’19, pp. 262-265, Hangzhou, China, 14-15 Dec. 2019.
[23] L. Gong, C. Xiao, B. Cao, and Y. Zhou, "Adaptive smart control method for electric vehicle wireless charging system," Energies, vol. 11, no. 10, Article ID: 2685, 13 pp., Oct. 2018.
[24] م. ویسی، م. شاصادقی و م. ر. سلطانپور "طراحی کنترلکننده پایدار مقاوم بهینه فازی جهت پایدارسازی سرعت خودروی برقی، در حضور عدم قطعیتهای پارامتری و اغتشاشات خارجی،" نشریه مهندسی برق و مهندسی كامپیوتر ایران، الف- مهندسی برق، سال 17، شماره 2-الف، صص. 96-81، تابستان 1398.
[25] F. Diba, A. Arora, and E. Esmailzadeh, "Optimized robust cruise control system for an electric vehicle," Systems Science & Control Engineering: an Open Access J., vol. 2, no. 1, pp. 175-182, Dec. 2014.
[26] K. Nam, S. Oh, H. Fujimoto, and Y. Hori, "Design of adaptive sliding mode controller for robust yaw stabilization of in-wheel-motor-driven electric vehicles," World Electric Vehicle J., vol. 5, no. 2, pp. 588-597, Jun. 2012.
[27] S. Deb, X. Gao, K. Tammi, K. Kalita, and P. Mahanta, "A novel chicken swarm and teaching learning-based algorithm for electric vehicle charging station placement problem," Energy, vol. 220, Article ID: 119645, Apr. 2021.
[28] S. Deb, et al., "A robust two-stage planning model for the charging station placement problem considering road traffic uncertainty," IEEE Trans. on Intelligent Transportation Systems, early access, 15 pp., Feb. 2021.
[29] V. Ponnam and K. Swarnasri, "Multi-objective optimal allocation of electric vehicle charging stations in radial distribution system using teaching learning based optimization," International J. of Renewable Energy Research, vol. 10, no. 1, pp. 366-377, Mar. 2020.
[30] P. Ning, O. Onar, and J. Miller, "Genetic algorithm-based coil system optimization for wireless power charging of electric vehicles," in Proc. IEEE Transportation Electrification Conf. and Expo, ITEC’13, 5 pp., Detroit, MI, USA, 16-19 Jun. 2013.
[31] A. Niccolai, L. Bettini, and R. Zich, "Optimization of electric vehicles charging station deployment by means of evolutionary algorithms," International J. of Intelligent Systems, vol. 36, no. 9, pp. 5359-5383, Sept. 2021.