طراحی و پيادهسازی كنترلكننده فازی مد لغزشي برای كنترل حركت يك ميز لرزه الكتريكی با استفاده از فيلتر کالمن توسعهيافته تطبيقی
محورهای موضوعی : مهندسی برق و کامپیوترنیما رجبی 1 , رمضان هاونگی 2 *
1 - دانشگاه بیرجند
2 - دانشگاه بیرجند
کلید واژه: میز شبیهساز لرزه, فیلتر کالمن توسعهیافته تطبیقی, فیلتر کالمن, کنترلر فازی مد لغزشی,
چکیده مقاله :
در این مقاله، یك كنترلكننده فازی مد لغزشی به همراه فیلتر کالمن توسعهیافته تطبیقی برای کنترل یک سیستم میز لرزه به همراه عملگر الکتریکی و مکانیزم بالاسکرو طراحی میشود. وجود عدم قطعیتهای مربوط به پارامترهای مدل و آلوده به نویز بودن دادههای دو سنسور انکودر و شتابسنج خطی موجب بروز مشکلات فراوانی در کنترل این سیستم میشود. از این رو به کارگیری کنترلکنندهای که مبتنی بر مدل دقیق نباشد و یک فیلتر غیر خطی تطبیقی، امری حیاتی است. روش کنترل فازی مد لغزشی و فیلتر کالمن توسعهیافته یک روش مناسب برای کنترل این سیستم میباشد. در کنترل مد لغزشی، بروز لرزش در ورودی کنترلی امری اجتنابناپذیر است. در این مقاله برای کاهش پدیده نامطلوب لرزش از یك مكانیزم استنتاج فازی ساده برای تخمین درست حد بالای عدم قطعیت استفاده میشود. در ادامه از یک روش بازگشتی برای تعیین ماتریسهای کواریانس نویز سیستم و اندازهگیری استفاده میشود. دادههای دو سنسور انکودر و شتابسنج خطی در فیلتر کالمن توسعهیافته تطبیقی ترکیب شده و نتایج حاصل در حذف نویز و تخمین پارامترهای لازم مورد بررسی قرار میگیرد. از فیدبک سرعت خطی که توسط فیلتر کالمن در دسترس قرار میگیرد به منظور پایدارسازی و کنترل سیستم حلقه بسته استفاده میشود. در انتها به منظور بررسی عملکرد ساختار کنترلی ارائهشده با آزمایش به کمک میز لرزه مورد بررسی قرار میگیرد. نتایج حاصل نشان میدهند که روش مطرحشده بسیار کارآمد است.
In this paper, Design of a fuzzy sliding mode controller (FSMC) with adaptive extended Kalman filter (AEKF) for controlling a shake table system with electric actuator and ball-screw mechanism. Due to the uncertainties regarding the model parameters and the noise of the data of the two encoder and accelerometer sensors, there are many problems in controlling this system. Therefore, it is crucial to employ a non-precise model-based controller and a nonlinear adaptive filter. The fuzzy sliding mode control and Extended Kalman filter are a good way to control this system. In sliding mode control, chattering at the control input is inevitable. In this paper, a simple fuzzy inference mechanism is used to reduce the undesirable phenomenon of chattering by correctly estimating the upper bound of uncertainty. In the following, a recursive method is used to determine the system and measurement noise covariance matrices. The data of the two encoder and accelerometer sensors are combined in the adaptive extended Kalman filter and the results in noise elimination and parameter estimation are investigated. Linear speed feedback available through the Kalman filter is used to stabilize and control the closed loop system. The end is examined to check the performance of the control structure provided by the seismic table test. The results show that the proposed method is very effective.
[1] A. Baratta, I. Corbi, O. Corbi, R. Carneiro Barros, and R. Bairrao, "Shaking table experimental researches aimed at the protection of structures subject to dynamic loading," The Open Construction and Building Technology J., vol. 6, pp. 336-360, 2012.
[2] X. Yang, H. Hongxing, and H. Junwei, "Three state controller design of shaking table in active structural control system," in Proc. IEEE Int. Conf. on Control and Automation, pp. 88-93, Guangzhou, China, 30 May-1 Jun. 2007.
[3] D. J. Lee, et al., "The tracking control of uni-axial servo-hydraulic shaking table system using time delay control," in Proc. IEEE SICE-ICASE In. Joint Conf., , pp. 29-32, Busan, South Korea, 18-21 Oct. 2006.
[4] K. Seki, M. Iwasaki, M. Kawafuku, H. Hirai, and K. Yasuda, "Adaptive compensation for reaction force with frequency variation in shaking table systems," IEEE Trans. on Industrial Electronics, vol. 56, no. 10, pp. 3864-3871, Oct. 2009.
[5] ا. صادقی، ج. کریمی و س. ح. ساداتی، "طراحی قانون هدایت مقاوم سهبعدی ربات پرنده به روش فازی - مد لغزشی،" مجله مهندسی مکانیک شریف، دوره 33.3، شماره 2، صص. 25-13، پاییز و زمستان 1396.
[6] س. شکی و م. ر. ذاکرزاده، "مدل¬سازی و کنترل عملگر آلیاژ حافظه¬دار با روش مد لغزشی فازی،" مجله مهندسی مکانیک مدرس، دوره 16، شماره 7، صص. 25-13، مهر 1395.
[7] A. S. Oleg and V. M. Andrei, "Adaptive estimation algorithms and their applications to measurement data processing," in Proc. IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus’19, pp. 3-8, Saint Petersburg and Moscow, Russia, 28-31 Jan. 2019.
[8] Y. Huo, Z. Cai, W. Gong, and Q. Liu, "A new adaptive Kalman filter by combining evolutionary algorithm and fuzzy inference system," in Proc. IEEE Congress on Evolutionary Computation, CEC’14, pp. 2893-2900, Beijing, China, 6-11 Jul. 2014.
[9] B. Feng, M. Fu, H. Ma, Y. Xia, and B. Wang, "Kalman filter with recursive covariance estimation-sequentially estimating process noise covariance," IEEE Trans. on Industrial Electronics, vol. 61, no. 11, pp. 6253-6263, Nov. 2014.
[10] S. Sarkka and J. Hartikainen, "Non-linear noise adaptive Kalman filtering via variational Bayes," in Proc. IEEE Int. Workshop on Machine Learning for Signal Processing, MLSP’16, 6 pp., Southampton, UK, 22-25 Sept. 2016.
[11] W. Liu, Y. Liu, and R. Bucknall, "A robust localization method for unmanned surface vehicle (USV) navigation using fuzzy adaptive Kalman filtering," IEEE Access, vol. 7, pp. 46071-46083, 2019.
[12] A. Assad, W. Khalaf, and I. Chouaib, "Novel adaptive fuzzy extended Kalman filter for attitude estimation in GPS-denied environment, " Gyroscopy and Navigation, vol. 10, no. 3, pp. 131-146, 2019.
[13] M. Tarnik and J. Murgas, "Model reference adaptive control of permanent magnet synchronous motor," J. of Electrical Engineering, vol. 62, no. 3, pp. 117-125, May 2011.
[14] S. Yu, Y. Feng, and X. Yang, "Extended state observer-based fractional order sliding-mode control of piezoelectric actuators," Proc. of the Institution of Mechanical Engineers, Part I: J. of Systems and Control Engineering, Article No.: 0959651820934351, 2020.
[15] X. Yang, P. Wei, Y. Zhang, X. Liu, and L. Yang, "Disturbance observer based on biologically inspired integral sliding mode control for trajectory tracking of mobile robots," IEEE Access, vol. 7, pp. 48382-48391, 2019.
[16] K. S. Mawonou, A. Eddahech, D. Dumur, D. Beauvois, and E. Godoy, "Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter," J. of Power Sources, vol. 435, Article No.: 226710, 30 Sept. 2019.
[17] ا. صیادی، و م. ت. ثابت، "دینامیک و کنترل مجموعه ربات های غیر هولونومیک به منظور شرکت در عملیات شکار جمعی در سطوح غیرمستوی،" مجله مهندسی مکانیک شریف، دوره 30، شماره 1، صص. 37-15، پاییز و زمستان 1393.
[18] L. Jiang and H. Zhang, "Redundant measurement-based second order mutual difference adaptive Kalman filter," Automatica, vol. 100, no. 3, pp. 396-402, Feb. 2019.
[19] A. Mehrjouyan and A. Alfi, "Robust adaptive unscented Kalman filter for bearings-only tracking in three dimensional case," Applied Ocean Research, vol. 87, pp. 223-232, Jun. 2019.
[20] N. Rajabi, A. H. Abolmasoumi, and M. Soleymani, "Sliding mode trajectory tracking control of a ball‐screw‐driven shake table based on online state estimations using EKF/UKF," Structural Control and Health Monitoring, vol. 25, no. 4, Article No.: e2133, Apr. 2018.
[21] Pacific Earthquake Engineering, Earthquake and Station Details. Retrieved from http://www.peer.berkeley.edu.