طراحی و ساخت رلهی خطای امپدانس بالا بر اساس تحلیل هارمونیکی برای شبکهی توزیع 33 کیلوولت شهرستان اهواز
محورهای موضوعی : مهندسی برق و کامپیوترمهدي منادي 1 * , سیدقدرتاله سیفالسادات 2 , رضا کیانینژاد 3 , محمد بهاری پور 4
1 - دانشگاه شهید چمران اهواز
2 - دانشگاه شهید چمران اهواز
3 - دانشگاه شهید چمران اهواز
4 - شرکت فولاد خوزستان
کلید واژه: تحلیل هارمونیکی, حفاظت خطای امپدانس بالا, سیستم توزیع,
چکیده مقاله :
وقوع خطاهای امپدانس بالا (HIF) در شبکههای توزیع برق، خطرات جانی و مالی عمدهای را میتواند به همراه داشته باشد. از سوی دیگر، تشخیص این قبیل خطاها معمولاً توسط رلههای اضافه جریان که معمولاً در سیستمهای توزیع مورد استفاده قرار میگیرند، قابل انجام نیست و لازم است الگوریتمهای خاصی برای آن طراحی و پیشنهاد گردد. در این مقاله، ابتدا ماهیت این خطاها و روشهای شبیهسازی آنها مورد بررسی قرار گرفته و سپس با بررسی روشهای قابل استفاده جهت تشخیص آنها، روشی مبتنی بر تحلیلهای هارمونیکی ارائه شده است. در این روش، رله پیشنهادی پس از وقوع خطا، هارمونیکهای مورد نیاز را استخراج نموده و با الگوریتمی که از قبل برای آن برنامهریزی شده است، وقوع خطا را تشخیص میدهد. در این مقاله، نحوه ساخت رله پیشنهادی و بخشهای مختلف سختافزار آن توضیح داده شده است. همچنین نرمافزار این رله برای حالتهای گوناگون وقوع خطاهای امپدانس بالا تحت آزمایش قرار گرفته و سختافزار مربوط به آن نیز در آزمون آزمایشگاهی در تشخیص این خطاها موفق بوده است. با توجه به این که سختافزار مورد استفاده در این رله میتواند با تغییرات اندکی برای سایر رلهها نیز مورد استفاده قرار گیرد، جزئیات مربوط به طراحی سختافزار هم در این مقاله بیان شده است.
Over current relays that are used commonly in distribution system can't detect high impedance fault. Therefore for that purpose it is necessary to design special algorithms. In this paper, a method based on harmonic analysis is presented. In this technique, the proposed relay, after fault occurs, extracts the required harmonic and according designed algorithm, occurrence of fault is reported. Software of this relay for different scenarios of high impedance faults was tested; also its hardware of relay in laboratory tests could correctly identify events.
[1] Y. S. Ko, T. K. Kang, H. Y. Park, H. Y. Kim, and H. S. Nam, "The FRTU-based fault-zone isolation method in the distribution systems," IEEE Tran. Power Del., vol. 25, no. 2, pp. 1001-1009, Apr. 2010.
[2] Y. S. Ko, "A self-isolation method for the HIF zone under the network-based distribution system," IEEE Trans. Power Del., vol. 24, no. 2, pp. 884-891, May 2009.
[3] V. Torres, J. L. Guardado, H. F. Ruiz, and S. Maximov, "Modeling and detection of high impedance faults," Int. J. of Electrical Power & Energy Systems, vol. 61, pp. 163-172, Oct. 2014.
[4] S. R. Samantaray, B. K. Panigrahi, and P. K. Dash, "High impedance fault detection in power distribution networks using time-frequency transform and probabilistic neural network," IET Gen. Trans. Dist., vol. 2, no. 2, pp. 261-270, Apr. 2008.
[5] A. H. Etemadi and M. Sanaye-Pasand, "High-impedance fault detection using multi-resolution signal decomposition and adaptive neural fuzzy inference system," IET Gen. Trans. Dist., vol. 2, no. 1, pp. 110-118, Feb. 2008.
[6] E. M. Lima, N. Brito, and B. Alencar, "High impedance fault detection based on Stockwell transform and third harmonic current phase angle," Electric Power Systems Research, vol. 175, no. 6, pp. 1-14, Nov. 2019.
[7] D. A. Gadanayak and R. K. Mallick, "Interharmonics based high impedance fault detection in distribution systems using maximum overlap wavelet packet transform and a modified empirical mode decomposition," Int. J. Electrical Power & Energy Systems, vol. 112, pp. 282-293, Nov. 2019.
[8] A. Ghaderi, H. L. Ginn, and H. A. Mohammadpour, "High impedance fault detection: a review," Electric Power System Research, vol. 143, pp. 376-388, Feb. 2017.
[9] M. Thomas, N. Bhaskar, and A. Prakash, "Voltage based detection method for high impedance fault in a distribution system," J. Inst. Engineers, India: Ser. B, vol. 9, no. 3, pp. 1-11, Jun. 2015.
[10] T. M. Lai, L. A. Snider, E. Lo, and D. Sutanto, "High-impedance fault detection using discrete wavelet transform and frequency range and RMS conversion," IEEE Trans. Power Del., vol. 20, no. 1, pp.¬397-407, Jun. 2005.
[11] Y. Sheng and S. M. Rovnyak, "Decision tree-based methodology for high impedance fault detection," IEEE Trans. on Power Delivery, vol. 19, no. 2, pp. 533-536, Mar. 2004.
[12] A. Soheili, J. Sadeh, H. Lomei, and K. Muttaqi, "A new high impedance fault detection scheme: Fourier based approach," in Proc. IEEE Int. Conf. Power System Technology, POWERCON’16, 6 pp., Wollongong, Australia, 28 Sept.-1 Oct. 2016.
[13] M. Sedighizadeh, A. Rezazadeh, and N. I. Elkalashy, "Approaches in high impedance fault detection a chronological review," Advances in Electrical and Computer Engineering, vol. 10, no. 3, pp. 114-128, Jun. 2010.
[14] P. K. Nayak, K. Sarwagya, and T. Biswal, "A novel high impedance fault detection technique in distribution systems with distributed generators," in Proc. National Power Systems Conf., NPSC’16, 6 pp., Bhubaneswar, India, 19-21 Dec. 2016.
[15] E. M. Lima, et al., "High impedance fault detection method based on the short-time fourier transform," IET Gen. Trans. Dist., vol. 12, no. 11, pp. 2577-2584, Jun. 2018.
[16] A. R. Sedighi, M. R. Haghifam, O. P. Malik, and M. H. Ghassemian, "High impedance fault detection based on wavelet transform and statistical pattern recognition," IEEE Trans. Power Del., vol. 20, no. 4, pp. 2414-2421, Oct. 2005.
[17] M. T. Yang, J. L. Guan, and J. C. Gu, "High impedance faults detection technique based on wavelet transform," Int. J. Elec. Comp. Sys. Engineering, vol. 1, no. 4, pp. 689-705, 2007.
[18] A. Bansal and G. N. Pillai, "High impedance fault detection using LVQ neural networks," Int. J. Comp. Info. Syst. Science and Engineering, vol. 1, no. 4, pp. 701-693, 2007.
[19] P. Routray, M. Mishra, and P. K. Rout, "High impedance fault detection in radial distribution system using s-transform and neural network," in Proc. IEEE Power Communication and Information Technology Conf., PCITC’15, pp. 545-551, Bhubaneswar, India, 15-17 Oct.. 2015.
[20] A. Etemadi and M. Sanaye-Pasand, "High-impedance fault detection using multi-resolution signal decomposition and adaptive neural fuzzy inference system," IET Gen. Tran. Dist., vol. 2, no. 1, pp. 110-118, Jan. 2008.
[21] S. Silva, et al., "High impedance fault detection in power distribution systems using wavelet transform and evolving neural network," Electric Power Systems Research, vol. 154, pp. 474-483, Jan. 2018.
[22] A. N. Milioudis, G. T. Andreou, and D. P. Labridis, "Detection and location of high impedance faults in multi-conductor overhead distribution lines using power line communication devices," IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 894-902, Mar. 2015.
[23] Q. Cui and Y. Weng, "Enhance high impedance fault detection and location accuracy via PMUs," IEEE Trans. Smart Grid, vol. 11, no. 1, pp. 797-809, Jan. 2019.
[24] S. Vlahinic, et al., "Back up protection scheme for high impedance faults detection in transmission systems based on synchrophasor measurements," IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1736-1746, Mar. 2020.
[25] S. H. Mortazavi, Z. Moravej, and S. M. Shahrtash, "A searching based method for locating high impedance arcing fault in distribution networks," IEEE Trans. Power Del., vol. 34, no. 2, pp. 438-447, Apr. 2018.
[26] F. M. Uriarte, Modeling, Detection, and Localization of High-Impedance Faults in Low-Voltage Distribution Feeders, M.Sc Thesis, Virginia Tech Polytechnic Institute, 2003.
[27] H. Wu, Study of High Impedance Fault Characteristics and Detection Methods, M.Sc. Thesis, The University of New South Wales, Australia, 2015.
[28] M. Adamiak, C. Wester, M. Thakur, and C. Jensen, High Impedance Fault Detection on Distribution Feeders, GE Industrial Solution, 2006.
[29] M. Michalik, M. Lukowicz, W. Rebizant, S. J. Lee, and S. H. Kang, "Verification of the wavelet-based HIF detecting algorithm performance in solidly grounded MV networks," IEEE Trans. Power Del., vol. 22, no. 4, pp. 2057-2064, Oct. 2007.
[30] M. Michalik, M. Lukowicz, W. Rebizant, S. J. Lee, and S. H. Kang, "High-impedance fault detection in distribution networks with use of wavelet-based algorithm," IEEE Trans. Power Del., vol. 21, no. 4, pp. 1793-1802, Oct. 2006.
[31] M. R. Haghifam, A. R. Sedighi, and O. P. Malik, "Development of a fuzzy inference system based on genetic algorithm for high-impedance fault detection," IET Proc. Gen. Trans. Dist., vol. 153, no. 3, pp. 359-367, May 2006.
[32] A. Ghaderi, H. A. Mohammadpour, H. L. Ginn, and Y. J. Shin, "High-impedance fault detection in the distribution network using the time-frequency-based algorithm," IEEE Trans. Power Del., vol. 30, no. 3, pp. 1260-1268, Jun. 2015.
[33] N. I. Elkalashy, et al., "Modeling and experimental verification of high impedance arcing fault in medium voltage networks," IEEE Trans. Dielect. Elec. Insu., vol. 14, no. 2, pp. 375-383, Apr. 2007.
[34] M. Kizilcay and T. Pniok, "Digital simulation of fault arcs in power systems," European Trans. on Electrical Power, vol. 1, no. 1, pp. 55-60, Feb. 1991.
[35] A. Aljohani and I. Habiballah, "High-impedance fault diagnosis: a review," Energies, vol. 13, no. 23, Article No.: en13236447, 2020.
[36] C. Ozansoy, "Performance analysis of skewness methods for asymmetry detection in high impedance faults," IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4952-4955, Nov. 2020.
[37] https://tools.analog.com/en/filterwizard/
[38] س. ق. سیفالسادات و همکاران، مطالعه و بررسی خطای امپدانس بالا در شبکه توزیع برق 33 کیلوولت اهواز و ساخت نمونه آزمایشگاهی رله تشخیص این خطا، شماره قرارداد طرح پژوهشی 55/13472، شرکت توزیع نیروی برق اهواز، اهواز، 1392.