آنالیز عملکرد مبدل DC-DC کاهنده- افزاینده جدید با ضریب افزایندگی بالا برای کاربرد در سیستم خورشیدی
محورهای موضوعی : مهندسی برق و کامپیوترمحمدرضا بنائی 1 * , حسین اژدرفائقی بناب 2
1 - دانشگاه شهید مدنی آذربایجان
2 - دانشگاه شهید مدنی آذربایجان
کلید واژه: مبدل DC-DC بدون ترانسفورماتور کاهنده- افزاینده سیستم خورشیدی بهره ولتاژ بالا تنش ولتاژ,
چکیده مقاله :
در بعضی از کاربردها مانند سلولهای خورشیدی که نیاز به ولتاژ بالایی است، میبایست از مبدلهای DC-DC با ضریب بهره بالا استفاده شود اما مبدل افزاینده مرسوم نمیتواند بهره ولتاژ بالایی را داشته باشد و به همین دلیل در این مقاله یک مبدل DC-DC کاهنده- افزاینده تککلیده جدید بدون ترانسفورماتور با ضریب بهره بالا و تنش ولتاژ کاهشیافته در دو سر عناصر نیمههادی برای کاربرد در سیستم خورشیدی پیشنهاد میشود. بهره ولتاژ مبدل پیشنهادی در حالت افزایندگی بالاتر از مبدلهای افزاینده مرسوم و کاهنده- افزاینده است. تنش ولتاژ کاهشیافته در دو سر کلید فعال، اجازه انتخاب ماسفت با ولتاژ نامی پایین به منظور کاهش تلفات هدایتی و کلیدزنی را میدهد و تنش ولتاژ پایین در دو سر دیود اجازه استفاده از دیود سریع برای جلوگیری از ایجاد جریان برگشتی دیود را میدهد. مبدل پیشنهادی در دو رژیم هدایت پیوسته و ناپیوسته میتواند کار کند. در این مقاله مدهای کاری مختلف مبدل پیشنهادی، محاسبات مربوط به بهره، جریانهای عبوری از عناصر و بازده ارائه میشود. برای اثبات عملکرد صحیح مبدل پیشنهادی نتایج شبیهسازی در محیط نرمافزار PSCAD و نتایج عملی نیز ارائه میشود.
In some applications that we need a high voltage gain such as the photovoltaic cell and fuel cell, high step up dc-dc converters must be used, but conventional boost converter cannot provide the high voltage gain. For this reason, in this paper, a single switch transformerless high step-up buck boost dc-dc converter with reduced voltage stress on the semiconductors is proposed. The proposed converter has higher voltage gain in step-up mode in comparison with conventional boost and buck-boost converters. Reduced voltage stress on the active switch allows to choose lower voltage rating MOSFETs to reduce both switching and conduction losses. Low voltage stress on the diodes allows the use of Schottky rectifiers for alleviating the reverse-recovery current. The proposed converter can be operated in the continuous conduction mode (CCM) and the discontinuous conduction mode (DCM). In this paper, different operation modes of the proposed converter, calculation of the voltage gain, the currents that flow through the components, efficiency and capacitors voltage ripple are presented. To verify the operation of the proposed converter, simulation results via PSCAD software and experimental results are provided.
[1] B. Yang, W. Li, Y. Zhao, and X. He, "Design and analysis of a grid connected photovoltaic power system," IEEE Trans. Power Electron., vol. 25, no. 4, pp. 992-1000, Apr. 2010.
[2] A. Abedini and A. Nasiri, "Applications of super capacitors for PMSG wind turbine power smoothing," in Proc. IEEE Ind. Electron. Conf., pp. 3347-3351, Nov. 2008.
[3] T. Kerekes, Analysis and Modelling of Transformerless Photovoltaic Inverter Systems, Ph.D Thesis, Institute of Energy Technology, Aalborg University, Denmark, Aug. 2009.
[4] M. G. Villalva, J. R. Gazoli, and E. R. Filho, "Comprehensive approach to modeling and simulation of photovoltaic arrays," Power Electron., IEEE Trans., vol. 24, no. 5, pp. 1198-1208, May 2009.
[5] M. Veerachary, T. Senjyu, and K. Uezato, "Voltage-based maximum power point tracking control of PV system," IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 1, pp. 262-270, Jan. 2002.
[6] L. S. Yang, T. J. Liang, and J. F. Chen, "Transformer-less DC-DC converter with high voltage gain," IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
[7] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, "A new design method for high-power high-efficiency switched-capacitor DC-DC converters," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008.
[8] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, "Step-up switching-mode converter with high voltage gain using a switched capacitor circuit," IEEE Trans. Circuits Syst. I, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
[9] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, "Novel high step-up DC-DC converter for fuel cell energy conversion system," IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007-2017, Jun. 2010.
[10] K. C. Tseng and T. J. Liang, "Analysis of integrated boost-flyback step-up converter," IEE Proc. Inst. Elect. Eng.-Electric Power Appl., vol. 152, no. 2, pp. 217-225, Mar. 2005.
[11] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154-162, Jan. 2008.
[12] B. Axelrod, Y. Berkovich, and A. loinovici, "Switched coupled-inductor cell for DC-DC converters with very large conversion ratio," in Proc. IEEE Industrial Electronics Soc. Conf., pp. 2366-2371, Nov. 2006.
[13] Q. Zhao and F. C. Lee, "High-efficiency, high step-up DC-DC converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65-73, Jan. 2003.
[14] F. L. Luo, "Six self-lift DC-DC converters, voltage lift technique," IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1268-1272, Dec. 2001.
[15] F. L. Luo and H. Ye, "Positive output super-lift converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105-113, Jan. 2003.
[16] K. C. Tseng and T. J. Liang, "Novel high-efficiency step-up converter," in IEE Proc.-Electr. Power Appl., vol. 151, pp. 182-190, Mar. 2004.
[17] J. M. Kwon and B. H. Kwon, "High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems," IEEE Trans. Power Electron., vol. 24, no. 1, pp. l08-115, Jan. 2009.
[18] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Transformerless DC-DC converters with a very high DC line-to-load voltage ratio," in Proc. IEEE Int. Symp. Circuits Syst., ISCAS'03, pp. 435-438, May 2003.
[19] R. J. Wai and R. Y. Duan, "High-efficiency DC/DC converter with high voltage gain," IEE Proc. Inst. Elect. Eng.-Electr., Power Appl, vol. 152, no. 4, pp. 793-802, Jul. 2005.
[20] S. M. Chen, T. J. Liang, and L. S. Yang, "A boost converter with capacitor multiplier and coupled inductor for AC module applications," IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1503-1511, Apr. 2013.
[21] T. J. Liang, J. H. Lee, S. M. Chen, J. F. Chen, and L. S. Yang, "Novel isolated high-step-up DC-DC converter with voltage lift," IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1483-1491, Apr. 2013.
[22] L. J. Chien, C. C. Chen, J. F. Chen, and Y. P. Hsieh, "Novel three-port converter with high-voltage gain," IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4693-4703, Sep. 2014.
[23] K. C. Tseng, J. T. Lin, and C. C. Huang, "High step-up converter with three-winding coupled inductor for fuel cell energy source applications," IEEE Trans. Power Electron., vol. 30, no. 3, pp. 574-581, Feb. 2015.
[24] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "Novel high step-up DC-DC converter with coupled-inductor and switched-capacitor techniques," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 998-1007, Feb. 2012.
[25] B. Gu, J. Dominic, J. S. Lai, Z. Zhao, and C. Liu, "High boost ratio hybrid transformer DC-DC converter for photovoltaic module applications," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2048-2058, Apr. 2013.
[26] A. Ajami, H. Ardi, and A. Farakhor, "Design, analysis and implementation of a buck-boost DC/DC converter," IET Power Electron., vol. 7, no. 12, pp. 2902-2913, Dec. 2014.
[27] H. K. Liao, T. J. Liang, L. S. Yang, and J. F. Chen, "Non-inverting buck-boost converter with interleaved technique for fuel-cell system," IET Power Electron., vol. 5, no. 8, pp. 1379-1388, Sept. 2012.
[28] L. S. Yang, T. J. Liang, and J. F. Chen, "Transformer-less DC-DC converter with high voltage gain," IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
[29] K. I. Hwu and T. J. Peng, "High-voltage-boosting converter with charge pump capacitor and coupling inductor combined with buck-boost converter," IET Power Electron., vol. 7, no. 1, pp. 177-188, Jan. 2014.
[30] M. R. Banaei, H. Ardi, R. Alizadeh, and A. Farakhor, "Non-isolated multi-input-single-output DC/DC converter for photovoltaic power generation systems," IET Power Electron., vol. 7, no. 11, pp. 2806-2816, Jun. 2014.
[31] M. R. Banaei and H. A. F. Bonab, "A novel structure for single-switch nonisolated transformerless buck-boost DC-DC converter," IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 198-205, Jan. 2017.
[32] E. Salary, M. R. Banaei, and A. Ajami, "Design of novel step-up boost DC/DC converter," Iranian J. of Science and Technol., vol. 41, no. 1, pp. 13-22, Mar. 2017.
[33] M. R. Banaei, H. Ardi, and A. Farakhor, "Analysis and implementation of a new single-switch buck-boost DC/DC converter," IET Power Electron., vol. 7, no. 7, pp. 1906-1914, Jul. 2014.