: نهانکاوی کور ویدئو با رویکرد یادگیری شبهناظر برای الگوریتمهای نهاننگاری ویدئوی مبتنی بر بردارهای حرکت
محورهای موضوعی : مهندسی برق و کامپیوترجواد مرتضوی مهریزی 1 , مرتضی خادمی 2 , هادی صدوقی یزدی 3
1 - دانشگاه فردوسی مشهد
2 - دانشگاه فردوسی مشهد
3 - دانشگاه فردوسی مشهد
کلید واژه: شبکه خودسازمانده پویای شبهناظر نهانکاوی کور ویدئو نهاننگاری ویدئو یادگیری شبهناظر,
چکیده مقاله :
اکثر الگوريتمهایي که تا اين زمان در زمينه نهانکاوي کور ويدئو ارائه شدهاند منطبق بر يادگيري باناظر بوده و هزینه تولید دادههای برچسبدار در آنها بالا میباشد. تحت این شرایط در فرایند نهانکاوی کور ویدئو تنها میتوان از تعداد محدودی از الگوریتمهای نهاننگاری که کد آنها در دسترس است برای آموزش طبقهبند استفاده کرد. بنابراین نمیتوان درباره کارایی نهانکاو برای شناسایی آن دسته از الگوریتمهای نهاننگاری ویدئویی که کد آنها در دسترس نیست، مطمئن بود. همچنین الگوریتمهای رایج عموماً برونخط میباشند و بنابراین آموزش مجدد سیستم زمانبر بوده و نمیتوان سیستم را به صورت برخط بروز کرد. برای حل این مشکلات یک روش جدید نهانکاوی کور ویدئو با رویکرد یادگیری شبهناظر در این مقاله ارائه شده است. در روش پیشنهادی با توجه به رفع محدودیت برچسبدار بودن دادههای آموزشی، کارایی طبقهبند برای آن دسته از الگوریتمهای نهاننگاری که کد آنها در دسترس نیست بهبود مییابد. همچنین ثابت میشود که روش پیشنهادی نسبت به روشهای متداول در فرایند نهانکاوی کور ویدئو پیچیدگی زمانی کمتری داشته و یک روش برخط بهینه است. نتایج شبیهسازی بر روی پایگاه داده استاندارد نشان میدهد که روش پیشنهادی علاوه بر مزایای فوق، دارای دقت آشکارسازی قابل مقایسه با روشهای متداول روز است.
Supervised learning algorithms are widely used in blind video steganalysis and the cost of generating labeled data in them is high. That is why only a limited number of steganography algorithms with accessible code can be used for the training the classifier. Therefore, we cannot be sure about the effectiveness of steganalyzer in identifying non-accessible video steganography algorithms. On the other hand, using offline classification methods in the blind video steganalysis causes the learning process be time consuming and the system cannot be updated online. To solve this problem, we propose a new method for the blind video steganalysis by semi-supervised learning approach. In the proposed method, by eliminating the limitation of labeled training dataset, the classifier performance is improved for video steganography algorithms with non-accessible code. It is also proved that the proposed method, compared to common classification methods for the blind video steganalysis, has less time complexity and it is an optimal online technique. The simulation results on the standard database show that in addition to the above advantages, this method has appropriate accuracy and is comparable to common methods.