Damping Controller Design Based on Identified Model Using Wide-Area Phasor Measurements Data
Subject Areas : electrical and computer engineeringAzin Atarodi 1 , Hemin GOLPIRA 2 * , Hassan Bevrani 3
1 -
2 - Kurdistan University
3 -
Keywords: Wide-area monitoring and control systems, damping controller, inter-area mode, low-order mode,
Abstract :
Continuous changes besides increasing complexities of modern power systems cause emergence of new challenges in modeling of power systems. Nowadays, with development of wide-area monitoring systems, data from the overall system can be used to identify and estimate model for power systems. This paper focuses on power system stabilizer tuning using the derived measurements-based model. The derived low-order model includes dynamic characteristics of inter-area dominant modes and can be used to design the damping controller and evaluate its effectiveness in power system studies. The controller can be reinterpreted as power system stabilizer and may be designed in two different methods of i) robust and ii) Ziegler-Nichols. The numerical results show the effectiveness of this approach in improving the small signal stability behavior of two-area 4-machine system using measured data, obtained from time domain simulation in MATLAB software.
[1] م. زمانی و غ. شاهقلیان، "طراحی هماهنگ پایدارساز سیستم قدرت و ادوات امپدانس متغیر برای افزایش میرایی مدهای بین ناحیهای با استفاده از الگوریتم ژنتیک،" مهندسی برق و مهندسی کامپیوتر ایران- الف مهندسی برق، سال 17، شماره 4، صص. 278-271، پاییز 1398.
[2] H. Golpira, A. R. Messina, and H. Bevrani, Renewable Integrated Power System Stability and Control, Wiley-IEEE, USA, 2021.
[3] T. Hashiguchi, et al., "Identification of characterization factor for power system oscillation based on multiple synchronized phasor measurements," Electrical Engineering in Japan, vol. 163, no. 3, pp. 10-18, May 2008.
[4] F. Al Hasnain, A. Sahami, and S. Kamalasadan, "An online wide-area direct coordinated control architecture for power grid transient stability enhancement based on subspace identification," IEEE Trans. on Industry Applications, vol. 57, no. 3, pp. 2896-2907, May/Jun. 2021.
[5] S. N. Sarmadi and V. Venkatasubramanian, "Electromechanical mode estimation using recursive adaptive stochastic subspace identification," IEEE Trans. on Power Systems, vol. 29, no. 1, pp. 349-358, Jan. 2013.
[6] H. Liu, et al., "ARMAX-based transfer function model identification using wide-area measurement for adaptive and coordinated damping control," IEEE Trans. on Smart Grid, vol. 8, no. 3, pp. 1105-1115, May 2015.
[7] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed, "Autopilot: adaptive control of distributed applications," in Proc. The Seventh Int. Symp. on High Performance Distributed Computing, pp. 172-179, Chicago, IL, USA, 31-31 Jul.1998.
[8] F. Bai, et al., "Design and implementation of a measurement-based adaptive wide-area damping controller considering time delays," Electric Power Systems Research, vol. 130, no. 2, pp. 1-9, Jan. 2016.
[9] A. Hasanovic, A. Feliachi, N. Bhatt, and A. DeGroff, "Practical robust PSS design through identification of low-order transfer functions," IEEE Trans. on Power Systems, vol. 19, no. 3, pp. 1492-1500, Aug. 2004.
[10] N. Kishor, L. Haarla, J. Turunen, M. Larsson, and S. R. Mohanty, "Controller design with model identification approach in wide area power system," IET Generation, Transmission & Distribution, vol. 8, no. 8, pp. 1430-1443, Aug. 2014.
[11] T. Prakash, V. P. Singh, and S. R. Mohanty, "A synchrophasor measurement based wide-area power system stabilizer design forinter-area oscillation damping considering variable time-delays," International J. of Electrical Power and Energy Systems, vol. 105, pp. 131-141, Feb. 2019.
[12] س. اباذری، ع. عرب دردری، م. برخورداری یزدی و م. ص. پیام، "طراحی کنترلکننده مقاوم محدوده وسیع SVC جهت میرایی نوسانات بین ناحیهای در سیستم قدرت،" مهندسی برق و مهندسی کامپیوتر ایران- الف مهندسی برق، سال 13، شماره 1، صص. 46-36، بهار 1394.
[13] A. Nayak, S. Mishra, J. Hossain, and M. Nizami, "Output feedback adaptive control for inter-area oscillation damping under power system uncertainties," in Proc. IEEE Int. Conf. on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, EEEIC/I&CPS Europe’19, 6 pp., Genova, Italy, 11-14 Jun. 2019.
[14] A. Nayak, S. Mishra, and S. Mudaliyar, "Adaptive wide area damping control for renewable integrated system," in Proc. IEEMA Engineer Infinite Conf. (eTechNxT), 6 pp., New Delhi, India, 13-14 Mar. 2018.
[15] K. M. Sreedivya, P. Aruna Jeyanthy, and D. Devaraj, "Improved design of interval type-2 fuzzy based wide area power system stabilizer for inter-area oscillation damping," Microprocessors and Microsystems, vol. 83, Article ID: 103957, Jan. 2021.
[16] I. Abdulrahman and G. Radman, "Wide-area-based adaptive neuro-fuzzy SVC controller for damping interarea oscillations," Canadian J. of Electrical and Computer Engineering, vol. 41, no. 3, pp. 133-144, Summer. 2018.
[17] M. E. Bento, "A hybrid particle swarm optimization algorithm for the wide-area damping control design," IEEE Trans. on Industrial Informatics, vol. 18, no. 1, pp. 592-599, Jan. 2022.
[18] J. Zhang, C. Chung, C. Lu, K. Men, and L. Tu, "A novel adaptive wide area PSS based on output-only modal analysis," IEEE Trans. on Power Systems, vol. 30, no. 5, pp. 2633-2642, Sept. 2014.
[19] I. Zenelis and X. Wang, "Wide-area damping control for interarea oscillations in power grids based on PMU measurements," IEEE Control Systems Letters, vol. 2, no. 4, pp. 719-724, Oct. 2018.
[20] L. Zeng, et al., "Design and real-time implementation of data-driven adaptive wide-area damping controller for back-to-back VSC-HVDC," International J. of Electrical Power & Energy Systems, vol. 109, pp. 558-574, Jul. 2019.
[21] C. Lu, Y. Zhao, K. Men, L. Tu, and Y. Han, "Wide-area power system stabiliser based on model-free adaptive control," IET Control Theory & Applications, vol. 9, no. 13, pp. 1996-2007, 27 Aug. 2015.
[22] S. Mukherjee, A. Chakrabortty, H. Bai, A. Darvishi, and B. Fardanesh, "Scalable designs for reinforcement learning-based wide-area damping control," IEEE Trans. on Smart Grid, vol. 12, no. 3, pp. 2389-2401, May 2021.
[23] I. Zenelis and X. Wang, "A model-free sparse wide-area damping controller for inter-area oscillations," International J. of Electrical Power & Energy Systems, vol. 136, Article ID: 107609, Mar. 2022.
[24] X. Zhang, C. Lu, S. Liu, and X. Wang, "A review on wide-area damping control to restrain inter-area low frequency oscillation for large-scale power systems with increasing renewable generation," Renewable and Sustainable Energy Reviews, vol. 57, pp. 45-58, May 2016.
[25] J. C. Mantzaris, A. Metsiou, and C. D. Vournas, "Analysis of inter area oscillations including governor effects and stabilizer design in South-Eastern Europe," IEEE Trans. on Power Systems, vol. 28, no. 4, pp. 4948-4956, Nov. 2013.
[26] Y. Chompoobutrgool, Concepts for Power System Small Signal Stability Analysis and Feedback Control Design Considering Synchrophasor Measurements, Diss. KTH Royal Institute of Technology, 2012.
[27] H. Bevrani, M. Watanabe, and Y. Mitani, Power System Monitoring and Control, John Wiley & Sons, 2014.
[28] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, McGraw-Hill New York, 1994.
[29] C. Rergis, I. Kamwa, R. Khazaka, and A. R. Messina, "A Loewner interpolation method for power system identification and order reduction," IEEE Trans. on Power Systems, vol. 34, no. 3, pp. 1834-1844, May 2018.
[30] V. V. Terzija, "Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation," IEEE Trans. on Power Systems, vol. 21, no. 3, pp. 1260-1266, Aug. 2006.
[31] H. Golpira, H. Bevrani, A. R. Messina, and B. Francois, "A data-driven under frequency load shedding scheme in power systems," IEEE Trans. on Power Systems, p. 1, 10.1109/TPWRS.2022.3172279, Early Access, 2022.