Proposing a New High-Gain Switched-Capacitor Pulsed-Power Converter Using Low Input Voltage Source
Subject Areas : electrical and computer engineeringsogand nikkhah 1 , Mohammad Rezanejad 2 * , Reza khosravi 3
1 -
2 - Uiversity of Mazandaran
3 -
Keywords: Pulsed power, power semiconductor switches, switched-capacitor converters,
Abstract :
In this paper a new topology of pulsed-power converter to generate high-voltage pulses by low-input source is proposed. The proposed high step-up converter can generate high output voltage with few number of elements and stages. This converter which is based on switch-capacitor structure is self-balanced and can be used in portable pulsed power supply. To show the validity of the proposed converter operation, a prototype of the proposed topology in the laboratory was constructed. The results show proper operation of the converter.
[1] J. R. Beveridge, S. J. MacGregor, J. G. Anderson, and R. A. Fouracre, "The influence of pulse duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields," IEEE Trans. on Plasma Sci., vol. 33, no. 4, pp. 1287-1293, Aug. 2005.
[2] M. P. J. Gaudreau, T. Hawkey, J. Petry, and M. Kempkes, "Pulsed power systems for food and wastewater processing," in Proc. 23rd Int. Power Modulator Symp., 4 pp., Rancho Mirage, CA, USA, Jun. 1998.
[3] S. Bae, A. Kwasinski, M. M. Flynn, and R. E. Hebner, "High-power pulse generator with flexible output pattern," IEEE Trans. on Power Elect., vol. 25, no. 7, pp. 1675-1684, Jul. 2010.
[4] S. Zabihi, F. Zare, G. Ledwich, A. Ghosh, and H. Akiyama, "A new pulsed power supply topology based on positive buck-boost converters concept," IEEE Trans. on Dielectrics and Electrical Insulation, vol. 17, no. 6, pp. 1901-1911, Dec. 2010.
[5] P. Davari, F. Zare, A. Ghosh, and H. Akiyama, "High-voltage modular power supply using parallel and series configurations of flyback converter for pulsed power applications," IEEE Trans. on Plasma Science, vol. 40, no. 10, pp. 2578-2587, Oct. 2012.
[6] J. S. Won, et al., "Characteristics of the forward type high voltage pulse power supply for lamp type ozonizer," in Proc. Power Conversion Conf., vol.1, pp. 100-103, Osaka, Japan, 2-5 Apr. 2002.
[7] Y. Wu, K. Liu, J. Qiu, X. X. Liu, and H. Xiao, "Repetitive and high voltage marx generator using solid-state devices," IEEE Trans. on Dielectrics and Electrical Insulation, vol. 14, no. 4, pp. 937-940, Aug. 2007.
[8] T. Heeren, et al., "Novel dual marx generator for micro plasma applications," IEEE Trans. on Plasma Science, vol. 33, no. 4, pp. 1205-1209, Aug. 2005.
[9] D. Wang, J. Qiu, and K. Liu, "All-solid-state repetitive pulsed-power generator using IGBT and magnetic compression switches," IEEE Trans. Plasma Sci., vol. 38, no. 10, pp. 2633-2638, Oct. 2010.
[10] H. Canacsinha, L. M. Redondo, and J. F. Silva, "New solid-state marx technology for bipolar repetitive high-voltage pulses," in Proc. IEEE Power Electronics Specialists Conf., pp. 791-795, Rhodes, Greece, 15-19 Jun. 2008.
[11] A. Alijani, J. Adabi, and M. Rezanejad, "A bipolar high-voltage pulsed-power supply based on capacitor-switch voltage multiplier," IEEE Trans. on Plasma Sci., vol. 44, no. 11, pp. 1820-1824, Nov. 2016.
[12] M. Rezanejad, A. Sheikholeslami, and J. Adabi, "High-voltage modular switched capacitor pulsed power generator," IEEE Trans. on Plasma Science, vol. 42, no. 5, pp. 1373-1379, May 2014.
[13] M. Ramezani, M. Rezanejad, and A. Sheikholeslami, "A new modular bipolar high-voltage pulse generator," IEEE Trans. on Industrial Electronics, vol. 64, no. 2, pp. 1195-1203, Feb. 2017.
[14] R. Khosravi and M. Rezanejad, "A new pulse generator with high voltage gain and reduced components," IEEE Trans. on Industrial Electronics, vol. 66, no. 4, pp. 2795-2802, Apr. 2019.