Design, Optimization, and Finite Element Analysis of a Disk-Type Permanent Magnet Synchronous Motor
Subject Areas : electrical and computer engineering
Keywords: Permanent magnet synchronous motor, high speed, disk-type motor analytical design 3-D finite element analysis genetic algorithm optimization,
Abstract :
This paper proposes to design, optimization and finite element simulation of an axial-flux, super-high speed, permanent magnet motor. The target motor with 0.5 hp rated power at speed of 60,000 rpm is used in a special industrial application. Based on nominal specifications of the motor and using analytical relations of motor design, the design calculations, sizing and motor dimensions are investigated. Due to special application of the target motor that needs to the demanded torque with minimum current and copper losses, the dimensions and design specifications of motor is optimized via genetic algorithm based on a torque per ampere cost function. Optimization algorithm determines the optimum value of airgap, permanent magnet flux density, current density and turns number of stator windings. To demonstrate of analytical design and optimization results, using 3-D model of motor in Maxwell software, finite element analysis are carried out in Magneto-static and Transient modes. The FEM simulation results confirm the analytical design results. Moreover, they show the significant reduction in RMS current and copper loss at rated torque. There is a good agreement between the values of torque, motor efficiency, and flux density resulted from both methods.