Adaptive Inverse Controller Design for Teleoperation Systems
Subject Areas : electrical and computer engineeringM. Sha Sadeghi 1 , H. R. Momeni 2 * , R. Amirifar 3 , S. Ganjefar 4
1 -
2 - Tarbiat Modares University
3 - Tarbiat Modares University
4 -
Keywords: Adaptive inverse controlimpedance controlSmith predictorteleoperation systemstime delay systems,
Abstract :
This paper presents a new robust adaptive inverse control approach for a force-reflecting teleoperation system with varying time delay. In this approach, using the Smith predictor idea, an impedance controller and an adaptive inverse controller are designed, respectively, for the master and slave robots such that the stability and performance of the closed-loop system are achieved in the presence of communication channels varying time delay. Also, based on robust control theory, two sufficient conditions for the stability of overall system are derived. The time domain desired specifications are contained in the design problem using the standard characteristic polynomials. Also, the proposed approach is compared with the sliding mode control. The simulation results show the proposed approach successfully compensates the position drift although time delay is randomly varying.
[1] K .Gu, V. L. Kharitonov, and J. Chen, Stability of Time - Delay Systems, Birkhäuser: Springer, 2003.
[2] R. J. Anderson and M. W. Spong, "Bilateral control of teleoperators with time delay," IEEE Trans. on Autom. Control, vol. 34, no. 5, pp. 494-501, May 1989.
[3] G. Niemeyer and J. Slotine, "Stable adaptive teleoperation," IEEE J. Ocean. Eng., vol. 16, no. 1, pp. 152-162, Jan. 1991.
[4] S. Munir and W. Book, "Internet - based teleoperation using wave variables with prediction," IEEE/ASME Trans. on Mechatronics, vol. 7, no. 2, pp. 124-133, Jun. 2002.
[5] S. Ganjefar, H. R. Momeni, F. J. Sharifi, and M. T. H. Beheshti, "Teleoperation control system using a hybrid structure of wave variables and Smith predictor with varying time delay estimation," Modares J. Eng., vol. 13, no. 3, pp. 73-84, Fall 2003.
[6] D. A. Lawrence, "Stability and transparency in bilateral teleoperation," IEEE Trans. on Robotic. Autom., vol. 9, no. 5, pp. 624-637, Oct. 1993.
[7] Y. Yokokohji and T. Yoshikawa, "Bilateral control of master - slave manipulators for ideal kinesthetic coupling formulation and experiment," IEEE Trans. Robotic. on Autom., vol. 10, no. 5, pp. 605-620, Oct. 1994.
[8] K. Hashtrudi-Zaad and S. E. Salcudean, "On the use of local force feedback for transparent teleoperation," in Proc. IEEE Int. Conf. Robotic. Autom., vol. 3, pp. 1863-1869, Detroit, Michigan, 1999.
[9] K. H. Sunny, H. R. Momeni, and F. J. Sharifi, "Designing a model reference adaptive controller for a teleoperation system using slave robot output prediction," Iranian J. Elec. and Comput. Eng., vol. 3, no. 2, pp. 96-102, Fall-Winter 2005.
[10] E. Kamrani, H. R. Momeni, and A. R. Sharafat, "A novel adaptive control system for stable teleoperation via Internet," in Proc. IEEE Int. Conf. Contr. Applicat., pp. 1164-1169, Toronto, Canada, Aug. 2005.
[11] W. H. Zhu and S. E. Salcudean, "Stability guaranteed teleoperation: an adaptive motion/force control approach," IEEE Trans. Autom. Control, vol. 45, no. 11, pp. 1951-1969, Nov. 2000.
[12] H. Kazerooni, T. I. Tsay, and K. Hollerbach, "A controller design framework for telerobotics systems," IEEE Trans. Contr. Syst. Technol., vol. 1, no. 1, pp. 50-62, Mar. 1993.
[13] M. H. Gary, B. Leung, A. Francis, and J. Apkarian, "Bilateral controller for teleoperators with time delay via μ – synthesis," IEEE on Trans. Robot. Autom., vol. 11, no. 1, pp. 105-116, Feb. 1995.
[14] I. Elhajj, J. Tan, N. Xi, W. K. Fung, Y. H. Liu, T. Kaga, and T. Fukuda, "Multi - site Internet - based cooperative control of robotic operations," in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., vol. 2, pp. 826-831, Takamatsu, Japan, 31 Oct.-5 Nov. 2000.
[15] J. H. Park and H. C. Cho, "Sliding - mode controller for bilateral teleoperation with varying time delay," in Proc. IEEE/ASME Int. Conf. Advanced Intell. Mechatronics, pp. 311-316, Atlanta, US, Sep. 1999.
[16] J. H. Park and H. C. Cho, "Sliding mode control of bilateral teleoperation systems withforce-reflection on the Internet," in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., vol. 2, pp. 1187-1192, Takamatsu, Japan, 31 Oct-5 Nov. 2000.
[17] H. C. Cho, J. H. Park, K. Kim, and J. O. Park, "Sliding - mode - based impedance controller for bilateral teleoperation systems under varying time-delay," in Proc. IEEE Int. Conf. Robot. Autom., vol. 1 pp. 1025-1030, Seoul, South Korea, 2001.
[18] D. Lee and M. W. Spong, "Passive bilateral teleoperation with constant time delay," IEEE Trans. on Robotic. Autom., vol. 22, no. 2, pp. 269-281, Apr. 2006.
[19] D. J. Lee and M. W. Spong, "Bilateral teleoperation of multiple cooperative robots over delayed communication networks: theory," in Proc. IEEE Int. Conf. Robot. Autom., pp. 360-365, Barcelona, Spain, Apr. 2005.
[20] D. Lee, O. Martinez-Palafox, and M. W. Spong, "Bilateral teleoperation of multiple cooperative robots over delayed communication networks: application," in Proc. IEEE Int. Conf. Robot. Autom., pp. 366-371, Barcelona, Spain, Apr. 2005.
[21] P. Arcara and C. Melchiorri, "Control schemes for teleoperation with time delay: a comparative study," Robot. Autom. Syst., vol. 38, no. 1, pp. 49-64, Jan. 2002.
[22] E. J. Odriguez - Seda, D. Lee, and M. W. Spong, "An experimental comparison study for bilateral Internet - based teleoperation," in Proc. IEEE Conf. Contr. Applicat., CCA, pp. 1701-1706, Munich, Germany, Oct. 2006.
[23] B. Hannaford, "A design framework for teleoperators with kinesthetic feedback," IEEE Trans. on Robot. Autom., vol. 5, no. 4, pp. 426-434, Aug. 1989.
[24] J. Ueda and T. Yoshikawa, "Force reflecting bilateral teleoperation with time delay by signal filtering," IEEE Trans. on Robot. Autom., vol. 20, no. 3, pp. 256-268, Jun. 2004.
[25] K. B. Fite, L. Shao, and M. Goldfarb, "Loop shaping for transparency and stability robustness in bilateral telemanipulation," IEEE Trans. on Robot. Autom., vol. 20, no. 3, pp. 620-624, Jun. 2004.
[26] G. L. Plett, Adaptive Inverse Control of Plants with Disturbances, Ph. D. Dissert., Dept. Elec. Eng., Stanford Univ., Stanford, CA, May 1998.
[27] G. L. Plett, "Adaptive inverse control of unmodeled stable SISO and MIMO linear systems," Int. J. Adapt. Contr. Signal Process., vol. 16, no. 4, pp. 243-272, May 2002.
[28] G. L. Plett, "Adaptive inverse control of linear and nonlinear systems using dynamic neural networks," IEEE Trans. on Neural Net., vol. 14, no. 2, pp. 360-376, Mar. 2003.
[29] B. Widrow and E. Walach, Adaptive Inverse Control. Upper Saddle River, NJ: Prentice - Hall, 1996.
[30] G. L. Plett, "Efficient linear MIMO adaptive inverse control," in Proc. IFAC Workshop on Adapt. Learning in Contr. Signal Process., pp. 89-94, Cernobbio - Como, Italy, Aug. 2001.
[31] G. L. Plett and H. Böttrich, "DDEKF learning for fast nonlinear adaptive inverse control," in Proc. World Cong. on Comput. Intell., 6 pages, Honolulu, US, May 2002.
[32] M. Sha Sadeghi, H. R. Momeni, R. Amirifar, and S. Ganjefar, "A novel bilateral teleoperation paradigm with time varying communication delay," in Proc. IEEE Conf. Contr. Applicat., CCA, pp. 199-204, Munich, Germany, Oct. 2006.
[33] O. J. M. Smith, "Closer control of loops with dead time," Chem. Eng. Progress, vol. 53, no. 5, pp. 217-219, May 1957.
[34] Z. Palmor, "Stability properties of Smith dead - time compensator controllers," Int. J. Control, vol. 32, no. 6, pp. 937-949, Dec. 1980.
[35] M. S. Tavazoei and M. Haeri, "Comparison of the existing methods in determination of the characteristic polynomials," in Proc. of ARAS Conference, Istanbul, Turkey, pp. 130-133, 2005.
[36] S. E. Hamamci, I. Kaya, and M. Koksal, "Improving performance for a class of processes using coefficient diagram method," in Proc. 9th Mediterranean Conf. on Contr. Autom., vol. 1, pp. 092-1:092-6, Dubrovnik, Crotia, Jun. 2001.
[37] S. Manabe, "Coefficient diagram method," in Proc. 14th IFAC Symp. Autom. Contr. Aerospace, pp. 199-210, Seoul, Korea, Aug. 1998.