تصمیم گیری منفعلانه هوشمند برای حسگرهای بیدارشونده در پایش سازهای
محورهای موضوعی : مهندسی برق و کامپیوترسیدسهند نقیب هاشمی 1 , سید امیر اصغری توچائی 2 * , محمدرضا بینش مروستی 3
1 - دانشگاه خوارزمی
2 - دانشگاه خوارزمی
3 - دانشگاه خوارزمی
کلید واژه: پایش سلامت سازهای, شبکههای حسگر بیسیم, فرایند تصمیمگیری مارکوف, حسگرهای بیدارشونده,
چکیده مقاله :
امروزه از ساختمانهای اداری و مسکونی گرفته تا ابنیه تاریخی و ساختمانهای حساس و پراهمیت، نیاز به مراقبت و پایش ویژه دارند. بدیهی است چنین پایشی دارای هزینه، خطا و چالشهای بسیاری میباشد. شبکههای حسگر سیمی به دلایلی نظیر هزینه کمتر، کابردهای گستردهتر و نصب آسان در موارد زیادی در حال جایگزینی با شبکههای حسگر بیسیم هستند. در سازههای مختلف بسته به وضعیت و نوع سازه، مواردی نظیر مصرف انرژی، دقت و همچنین تحمل اشکال در از بین رفتن گرههای حسگر حایز اهمیت میباشند. بالاخص که با استفاده از شبکههای حسگر بیسیم، موارد یادشده، چالشهایی دایمی هستند که با وجود تحقیقات صورتگرفته، ظرفیت بهبودیافتن دارند. ایده اصلی مقاله پیش رو عبارت است از استفاده رویکردی نوآورانه در به کارگیری از فرایند تصمیمگیری مارکوف و حسگرهای بیدارشونده، تا به این وسیله هزینه و خطا در پایش سازههای پایا و نیمهپایا را نسبت به روشهای فعلی کاهش دهیم و بر اساس صورت مسئله، مزایایی را در پیادهسازی و اجرا به همراه داشته باشیم. بنابراین نوآوری روش پیشنهادی، استفاده از فرایند تصمیمگیری مارکوف و حسگرهای بیدارشونده به منظور ارائه روشی نوین و بهینهتر نسب به روشهای موجود به صورت اختصاصی برای پایش سلامت سازهای سازههای پایا و نیمهپایا است. این رویکرد در قالب شش گام تشریح شده است و در مقابل، روشهای پرکاربردی مورد مقایسه قرار گرفتهاند بدین گونه که در محیط شبیهسازی CupCarbon، با سنجههای مختلفی آزمایش و شبیهسازی شدهاند. نتایج نشان میدهد راهکار پیشنهادی در مقایسه با راهکارهای مشابه در موارد کاهش مصرفی انرژی از 11 تا 70 درصد، تحملپذیری اشکال در تبادل پیامها از 10 تا 80 درصد و همچنین در مبحث هزینه کل از 93 تا 97 درصد بهبود به دست آورده است.
Nowadays, office, residential, and historic buildings often require special monitoring. Obviously, such monitoring involves costs, errors and challenges. As a result of factors such as lower cost, broader application, and ease of installation, wireless sensor networks are frequently replacing wired sensor networks for structural health monitoring. Depending on the type and condition of a structure, factors such as energy consumption and accuracy, as well as fault tolerance are important. Particularly when wireless sensor networks are involved, these are ongoing challenges which, despite research, have the possibility of being improved. Using the Markov decision process and wake-up sensors, this paper proposes an innovative approach to monitoring stable and semi-stable structures, reducing the associated cost and error over existing methods, and according to the problem, we have advantages both in implementation and execution. Thus, the proposed method uses the Markov decision process and wake-up sensors to provide a new and more efficient technique than existing methods in order to monitor the health of stable and semi-stable structures. This approach is described in six steps and compared to widely used methods, which were tested and simulated in CupCarbon simulation environment with different metrics, and shows that the proposed solution is better than similar solutions in terms of a reduction of energy consumption from 11 to 70%, fault tolerance in the transferring of messages from 10 to 80%, and a reduction of cost from 93 to 97%.
[1] J. Luo, Y. Chen, M. Wu, and Y. Yang, "A survey of routing protocols for underwater wireless sensor networks," IEEE Commun. Surv. Tutorials, vol. 23, no. 1, pp. 137-160, Jan. 2021.
[2] R. Piyare, A. L. Murphy, C. Kiraly, P. Tosato, and D. Brunelli, "Ultra low power wake-up radios: a hardware and networking survey," IEEE Communications Surveys and Tutorials, vol. 19, no. 4, pp. 2117-2157, Fourthquarter 2017.
[3] D. S. Deif and Y. Gadallah, "An ant colony optimization approach for the deployment of reliable wireless sensor networks," IEEE Access, vol. 5, pp. 10744-10756, 2017.
[4] A. B. Noel, A. Abdaoui, T. Elfouly, M. H. Ahmed, A. Badawy, and M. S. Shehata, "Structural health monitoring using wireless sensor networks: a comprehensive survey," IEEE Commun. Surv. Tutorials, vol. 19, no. 3, pp. 1403-1423, Third quarter 2017.
[5] N. Jan, et al., "A balanced energy-consuming and hole-alleviating algorithm for wireless sensor networks," IEEE Access, vol. 5, pp. 6134-6150, 2017.
[6] M. Aazam, S. Zeadally, and E. F. Flushing, "Task offloading in edge computing for machine learning-based smart healthcare," Comput. Networks, vol. 191, Article ID: 108019, 11 pp., May 2021.
[7] Y. Li, X. Zhang, and Q. Rong, "Optimization of hospital computer network and helicobacter pylori ulcer nursing analysis," Microprocess. Microsyst., vol. 81, Article ID:. 103771, Mar. 2021.
[8] T. M. Behera and S. K. Mohapatra, "A novel scheme for mitigation of energy hole problem in wireless sensor network for military application," Int. J. Commun. Syst., vol. 34, no. 11, Article ID: e4886, 25 Jul. 2021.
[9] B. R. Al-Kaseem, Z. K. Taha, S. W. Abdulmajeed, and H. S. Al-Raweshidy, "Optimized energy-efficient path planning strategy in WSN with multiple mobile sinks," IEEE Access, vol. 9, pp. 82833-82847, 2021.
[10] M. A. Khan, et al., "Network lifetime maximization via energy hole alleviation in wireless sensor networks," in Advances on Broad-Band Wireless Computing, Communication and Applications, (eds.) M. A. Khan, et al., pp. 279-290, Springer, 2017.
[11] G. Shi, K. Liu, and J. Zeng, "Cooperative depth rotation to avoid energy hole for 3D underwater sensor networks," in Proc. IEEE 24th Int. Conf. Comput. Support. Coop. Work Des. CSCWD’21, pp. 825-830, Dalian, China, 5-7 May 2021.
[12] G. S. Binu and B. Shajimohan, "A novel heuristic based energy efficient routing strategy in wireless sensor network," Peer-to-Peer Netw. Appl. vol. 13, no. 6, pp. 1853-1871, Jun. 2020.
[13] M. Abu Alsheikh, D. T. Hoang, D. Niyato, H. P. Tan, and S. Lin, "Markov decision processes with applications in wireless sensor networks: a survey," IEEE Commun. Surv. Tutorials, vol. 17, no. 3, pp. 1239-1267, Third Quarter 2015.
[14] T. M. Hansen, E. K. P. Chong, S. Suryanarayanan, A. A. Maciejewski, and H. J. Siegel, "A partially observable markov decision process approach to residential home energy management," IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1271-1281, Mar. 2018.
[15] H. Nigam, A. Karmakar, and A. K. Saini, "Wireless sensor network based structural health monitoring for multistory building," in Proc. 4th Int. Conf. Comput. Commun. Signal Process, ICCCSP’20, 5 pp., Chennai, India, 28,-29 Sept. 2020.
[16] S. Alamandala, R. L. N. Sai Prasad, and P. Rathish Kumar, "Cost-effective load measurement system for health monitoring using long-period grating as an edge filter," Opt. Fiber Technol., vol. 59, Article ID: 102328, Oct. 2020.
[17] S. Dey, R. Bhattacharyya, S. E. Sarma, and N. C. Karmakar, "A novel 'smart skin' sensor for chipless RFID-based structural health monitoring applications," IEEE Internet Things J., vol. 8, no. 5, pp. 3955-3971, Mar. 2021.
[18] X. Liu, J. Cao, and P. Guo, "SenetSHM: towards practical structural health monitoring using intelligent sensor networks," in Proc. IEEE Int. Confs. on Big Data and Cloud Computing, BDCloud'16, Social Computing and Networking, SocialCom'16 and Sustainable Computing and Communications, SustainCom'16, pp. 416-423, Atlanta, GA, USA, 8-10 Oct. 2016.
[19] E. Zaraket, N. M. Murad, S. S. Yazdani, L. Rajaoarisoa, and B. Ravelo, "An overview on low energy wake-up radio technology: active and passive circuits associated with MAC and routing protocols," J. Netw. Comput. Appl., vol. 190, Article ID: 103140, Sept. 2021.
[20] M. Magno, V. Jelicic, B. Srbinovski, V. Bilas, E. Popovici, and L. Benini, "Design, implementation, and performance evaluation of a flexible low-latency nanowatt wake-up radio receiver," IEEE Trans. Ind. Informatics, vol. 12, no. 2, pp. 633-644, Apr. 2016.
[21] J. Oller, I. Demirkol, J. Casademont, J. Paradells, G. U. Gamm, and L. Reindl, "Has time come to switch from duty-cycled MAC protocols to wake-up radio for wireless sensor networks?," IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 674-687, Apr. 2016.
[22] A. Fumtchum, F. Hutu, P. Tsafack, G. Villemaud, and E. Tanyi, "High efficiency rectifier for a quasi-passive wakeup radio," in Proc. Int. Symp. Signals, Circuits Syst., ISSCS'19, 4 pp., Iasi, Romania, 11-12 Jul. 2019.
[23] S. B. Amsalu, W. K. Zegeye, D. Hailemariam, and Y. Astatke, "Design and performance evaluation of an energy efficient routing protocol for wireless sensor networks," in Proc. 50th Annu. Conf. Inf. Syst. Sci, CISS’16, pp. 48-53, Princeton, NJ, USA, 16-18 Mar. 2016.
[24] S. J. Marinkovic and E. M. Popovici, "Nano-power wireless wake-up receiver with serial peripheral interface," IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1641-1647, Sep. 2011.
[25] M. Del Prete, D. Masotti, A. Costanzo, M. Magno, and L. Benini, "A dual-band wake-up radio for ultra-low power wireless sensor networks," in Proc. IEEE Top. Conf. Wirel. Sensors Sens. Networks, WiSNet’16, pp. 81-84, Austin, TX, USA, 24-27 Jan. 2016.
[26] G. Wittenburg, N. Dziengel, S. Adler, Z. Kasmi, M. Ziegert, and J. Schiller, "Cooperative event detection in wireless sensor networks," IEEE Commun. Mag., vol. 50, no. 12, pp. 124-131, Dec. 2012.
[27] X. Li, H. Wang, Y. Yu, and C. Qian, "An IoT data communication framework for authenticity and integrity," in Proc. of the 2nd Int. Conf. on Internet-of-Things Design and Implementation, IoTDI'17, pp. 159-170, Pittsburgh, PA, USA, 18-21 Apr 2017.
[28] F. Al-Quayed, A. Soudani, and S. Al-Ahmadi, "Lightweight feature extraction method for efficient acoustic-based animal recognition in wireless acoustic sensor networks," EURASIP J. Wirel. Commun. Netw., vol. 2020, Article ID: 256, 21 pp., 14 Dec. 2020.
[29] C. Titouna, M. Aliouat, and M. Gueroui, "FDS: fault detection scheme for wireless sensor networks," Wirel. Pers. Commun., vol. 86, no. 2, pp. 549-562, Aug. 2015.
[30] L. Gu, et al., "Lightweight detection and classification for wireless sensor networks in realistic environments," in Proc. of the 3rd Int. Conf. on Embedded Networked Sensor Systems, SenSys'05, pp. 205-217, San Diego, CA, USA, 2-4 Nov. 2005.
[31] L. Feng, C. XiaoDong, W. Youying, S. Huazhong, and Z. Haijing, "Research on wireless ad hoc network technology for building monitoring," J. Phys. Conf. Ser., vol. 1684, no. 1, Article ID: 012048, Nov. 2020.
[32] J. Chen, K. H. Low, Y. Yao, and P. Jaillet, "Gaussian process decentralized data fusion and active sensing for spatiotemporal traffic modeling and prediction in mobility-on-demand systems," IEEE Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 901-921, Jul. 2015.
[33] H. Baali, H. Djelouat, A. Amira, and F. Bensaali, "Empowering technology enabled care using IoT and smart devices: a review," IEEE Sens. J., vol. 18, no. 5, pp. 1790-1809, Mar. 2018.
[34] W. Dong, C. Chen, X. Liu, and J. Bu, "Providing OS support for wireless sensor networks: challenges and approaches," IEEE Commun. Surv. Tutorials, vol. 12, no. 4, pp. 519-530, Fourth Quarter 2010.
[35] M. Amjad, M. Sharif, M. K. Afzal, and S. W. Kim, "TinyOS-new trends, comparative views, and supported sensing applications: a review," IEEE Sens. J., vol. 16, no. 9, pp. 2865-2889, May 2016.
[36] B. Li and W. Dong, "Edgeprog: edge-centric programming for IoT applications," in Proc.-Int. Conf. Distrib. Comput. Syst., pp. 212-222, Wuyishan, China, 11-13 Nov. 2020.
[37] L. Gu and J. A. Stankovic, "t-kernel: providing reliable OS support to wireless sensor networks," in Proc. 4th Int. Conf. Embed. Networked Sens. Syst.-SenSys'06, pp. 1-14, Boulder, CO, USA, 31 Oct.-3 Nov. 2006.
[38] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, "Run-time dynamic linking for reprogramming wireless sensor networks," in Proc. 4th Int. Conf. Embed. Networked Sens. Syst.-SenSys'06, pp. 15-28, Boulder, CO, USA, 31 Oct.-3 Nov. 2006..
[39] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, "Wireless sensor network virtualization: a survey," IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 553-576, Jan. 2016.
[40] D. Gay, et al., "The nesC language: a holistic approach to networked embedded systems," ACM Sigplan Not., vol. 38, no. 5, pp. 1-11, May 2003.
[41] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, "The LiteOS operating system: towards unix-like abstractions for wireless sensor networks," in Proc. Int. Conf. on Information Processing in Sensor Networks, pp. 233-244, St. Louis, MO, USA, 22-24 Apr. 2008.
[42] P. Levis, "Experiences from a decade of TinyOS development," in Proc. 10th of the 10th USENIX Conf. on Operating Systems Design and Implementation. OSDI'12, pp. 207-220, Hollywood ,CA USA, 8-10 Oct. 2012.
[43] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. Schmidt, "RIOT OS: towards an OS for the Internet of Things," in Proc. IEEE Conf. on Computer Communications Workshops, pp. 79-80, Turin, Italy, 14-19 Apr 2014.
[44] M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. Wu, "Deploying wireless sensor networks with fault-tolerance for structural health monitoring," IEEE Trans. Comput., vol. 64, no. 2, pp. 382-395, Feb. 2015.
[45] Y. Liu, T. Voigt, N. Wirstrom, and J. Hoglund, "EcoVibe: on-demand sensing for railway bridge structural health monitoring," IEEE Internet Things J., vol. 6, no. 1, pp. 1068-1078, Feb. 2019.
[46] M. A. Maisto, G. Leone, A. Brancaccio, and R. Solimene, "Efficient planar near-field measurements for radiation pattern evaluation by a warping strategy," IEEE Access, vol. 9, pp. 62255-62265, 2021.
[47] X. Chen, G. Wang, and K. C. Ho, "Semidefinite relaxation method for unified near-field and far-field localization by AOA," Signal Processing, vol. 181pp. 107916-Apr. 2021.
[48] N. T. Hanh, H. T. T. Binh, N. Van Son, and M. Kim, "Minimal relay node placement for ensuring network connectivity in mobile wireless sensor networks," IEEE 19th Int. Symp. Netw. Comput. Appl. NCA’20, 8 pp., Cambridge, MA, USA, 24-27Nov. 2020.
[49] W. Doghri, A. Saddoud, and L. C. Fourati, "Cyber-physical systems for structural health monitoring: sensing technologies and intelligent computing," J. Supercomput., pp. 1-44, Jun. 2021.
[50] S. Kim, et al., "Health monitoring of civil infrastructures using wireless sensor networks," in Proc. of the 6th Int. Conf. on Information Processing in Sensor Networks, IPSN'07, pp. 254-263, Cambridge, MA, USA, 25-27 Apr. 2007.
[51] Y. Tselishchev and A. Boulis, "Wireless sensor network tesbed for structural health monitoring of bridges," in Proc. of the IEEE 36th Conf. on Local Computer Networks, pp. 1040-1043, Bonn, Germany, 4-7 Oct. 2011.
[52] D. Phanish, et al., "A wireless sensor network for monitoring the structural health of a football stadium," in Proc. of the IEEE 2nd World Forum on Internet of Things, WF-IoT’15, pp. 471-477, Milan, Italy, 14-16 Dec. 2015.
[53] M. K. Wittmann, et al., "Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex," Nat. Commun., vol. 6, Article ID: 12327, 2016.
[54] S. Misra, S. D. Hong, G. Xue, and J. Tang, "Constrained relay node placement in wireless sensor networks: formulation and approximations," IEEE/ACM Trans. Netw., vol. 18, no. 2, pp. 434-447, Apr. 2010.
[55] J. Ranieri, A. Chebira, and M. Vetterli, "Near-optimal sensor placement for linear inverse problems," IEEE Trans. Signal Process., vol. 62, no. 5, pp. 1135-1146, 1 Mar. 2014.
[56] W. Zhang, Q. Yin, H. Chen, F. Gao, and N. Ansari, "Distributed angle estimation for localization in wireless sensor networks," IEEE Trans. Wirel. Commun., vol. 12, no. 2, pp. 527-537, Feb. 2013.
[57] J. Yang and Z. Peng, "Beetle-swarm evolution competitive algorithm for bridge sensor optimal placement in SHM," IEEE Sens. J., vol. 20, no. 15, pp. 8244- 8255, 1 Aug. 2019.
[58] M. Mezzavilla, S. Goyal, S. Panwar, S. Rangan, and M. Zorzi, "An MDP model for optimal handover decisions in mmWave cellular networks," in Proc. European Conf. on Networks and Communications, EuCNC’16, pp. 100-105, Athens, Greece, 27-30 Jun. 2016.
[59] M. Abdulkarem, K. Samsudin, F. Z. Rokhani, and M. F. A. Rasid, "Wireless sensor network for structural health monitoring: a contemporary review of technologies, challenges, and future direction" Structural Health Monitoring, vol. 19, no. 3, pp. 693-735, Jul. 2019.
[60] A. Biason and M. Zorzi, "Battery-powered devices in WPCNs," IEEE Trans. Commun., vol. 65, no. 1, pp. 216-229, Jan. 2017.
[61] M. Frei, C. Deb, R. Stadler, Z. Nagy, and A. Schlueter, "Wireless sensor network for estimating building performance," Autom. Constr., vol. 111, Article ID: 103043, Mar. 2020.
[62] A. Arulmurugan and A. Amuthan, "Markov modulated bernoulli prediction process-based cluster head selection mechanism for improving resilience in wireless sensor networks," Int. J. Commun. Syst., vol. 34, no. 8, Article ID: e4771, May 2021.
[63] L. Muduli, P. K. Jana, and D. P. Mishra, "Wireless sensor network based fire monitoring in underground coal mines: a fuzzy logic approach," Process Saf. Environ. Prot., vol. 113, pp. 435-447, Jan. 2018.
[64] D. Catenazzo, B. Orflynn, and M. Walsh, "On the use of wireless sensor networks in preventative maintenance for industry 4.0," in Proc. Int. Conf. Sens. Technol. ICST’19, pp. 256-262, Limerick, Ireland, 4-6 Jan. 2019.
[65] M. E. Haque, et al., "Comparative study of IoT-based topology maintenance protocol in a wireless sensor network for structural health monitoring," Remote Sens., vol. 12, no. 15, Article ID: 2358-, Jul. 2020.