کنترل مد لغزشی ترمینال تطبیقی بدون تکینگی و مبتنی بر رؤیتگر اغتشاش برای کنترل سیستم ژیروسکوپ ارتعاشی میکروالکترومکانیک
محورهای موضوعی : مهندسی برق و کامپیوتر
1 - دانشگاه علوم و فنون هوایی شهید ستاری
چکیده مقاله :
در این مقاله، یک کنترلکننده مد لغزشی ترمینال تطبیقی بدون تکینگی مبتنی بر رؤیتگر اغتشاش برای فرایند تشخیص و کنترل فرایند تحریک سیستم ژیروسکوپ ارتعاشی میکروالکترومکانیک پیشنهاد میشود. بدین منظور در ابتدا معادلات دینامیکی سیستم ژیروسکوپ ارتعاشی بیان میگردد. در ادامه معادلات دینامیکی این سیستم به حوزه معادلات حالت و سپس به حوزه خطای ردگیری انتقال داده میشود. پس از آن ساختار دینامیکی رؤیتگر اغتشاش زمان محدود ارائه میگردد. سپس روش طراحی کنترل مد لغزشی ترمینال تطبیقی بدون تکینگی و مبتنی بر رؤیتگر اغتشاش زمان محدود بیان میشود. راهکار پیشنهادی کنترل فرایند تحریک را در حضور عدم قطعیتهای ساختاری و غیر ساختاری موجود در معادلات دینامیکی سیستم ژیروسکوپ ارتعاشی میکروالکترومکانیکی انجام میدهد و فرایند تشخیص از طریق تنها یک قانون تطبیقی انجام میگردد. اثبات ریاضی نشان میدهد که سیستم حلقه بسته با کنترل پیشنهادی و در حضور عدم قطعیتهای موجود، دارای پایداری مجانبی سراسری زمان محدود است. حضور رؤیتگر اغتشاش در ساختار کنترل پیشنهادی باعث میشود تا نقش عدم قطعیتهای غیر ساختاری در فرایند کنترل سیستم ژیروسکوپ را تضعیف نماید و دامنه ورودی کنترل را نیز کاهش دهد. برای بررسی عملکرد کنترل پیشنهادی، شبیهسازیهایی در 3 مرحله بر روی سیستم ژیروسکوپ ارتعاشی الکترومکانیک پیادهسازی میگردد. نتایج شبیهسازیها، عملکرد مطلوب راهکار پیشنهادی را تأیید مینمایند.
In this paper, an adaptive non-singular terminal sliding mode control based on disturbance observer is proposed for detection process and control of the micro-electromechanical vibratory gyroscope stimulation process. For this purpose, the dynamical equations of the vibrational gyroscope system are initially expressed. In the following, the dynamical equations of this system are transmitted to the domain of state-space equations and then to the domain of tracking error. After that, the dynamic structure of the finite time disturbance observer is presented. Then, the design of the adaptive non-singular terminal sliding mode control based on finite time disturbance observer is expressed. The proposed strategy carries out the control of the stimulation process in the presence of structured and un-structured uncertainties existing in the dynamic equations of the microelectromechanical vibrational gyroscope system, and performs the detection process through only an adaptive law. The mathematical proof shows that the closed-loop system with the proposed control, and in the presence of the existing uncertainties, has the finite time global asymptotic stability. The presence of a disturbance observer in the proposed control structure will weaken the role of un-structured uncertainties in the gyroscope control process and reduce the control input amplitude. In order to evaluate the proposed control performance, simulations in 3 steps are implemented on the electromechanical vibrational gyroscope system. Simulation results confirm the desired performance of the proposed control.
[1] N. Barbour and G. Schmidt, "Inertial sensors technology trends," in Proc. of IEEE. on Auto. Underwater Vehi., pp. 55-62, Cambridge, MA, USA, 21-21 Aug. 1998.
[2] C. Acar, Four Degrees of Freedom Micromachined Gyroscope, Tech. Rep. MSL-01003, University of California, 2001.
[3] C. Acar and A. Shkel, MEMS Vibratory Ggyroscopes: Structural Approaches to Improve Robustness, Springer, USA, 2009.
[4] C. C. Painter and A. M. Shkel, "Active structural error suppression in MEMS vibratory rate integrating gyroscopes," IEEE Sen. J., vol. 3, no. 5, pp. 595-606, Oct. 2003.
[5] Q. Zheng, L. Dong, D. H. Lee, and Z. Gao, "Active disturbance rejection control for MEMS gyroscopes," IEEE Trans. on Cont. Sys. Tech., vol. 17, no. 6, pp. 1432-1438, Apr. 2009.
[6] R. P. Leland, "Adaptive control of a MEMS gyroscope using Lyapunov methods," IEEE Trans. on Cont. Sys. Tech., vol. 14, no. 2, pp. 278-283, Mar. 2006.
[7] J. Fei and J. Zhou, "Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator," IEEE Trans. on Sys. Man and Cyb. Part B, vol. 42, no. 6, pp. 1599-1607, May 2012.
[8] Z. Song, H. Li, and K. Sun, "Adaptive dynamic surface control for MEMS triaxial gyroscope with nonlinear inputs," Non. Dyn. J., vol. 78, no. 1, pp. 173-182, May 2014.
[9] M. Zareh and S. A. Soheili, "Modified model reference adaptive control with application to MEMS gyroscope," J. Mech. Sci. and Tech., vol. 25, no. 8, pp. 2061-2066, Sept. 2011.
[10] Y. Fang, J. Fei, Y. Yang, and M. Hua, "Adaptive control of MEMS gyroscope using backstepping approach," in Proc. Int. Conf. on Cont., pp.361-366, Seoul, South Korea, 22-25 Oct. 2014.
[11] C. Lu and J. Fei, "Backstepping control of MEMS gyroscope using adaptive neural observer," Int. J. Mach. Lear. and Cyb., vol. 8, no. 6, pp. 1863-1873, Jul. 2017.
[12] V. Utkin, Sliding Modes in Control and Optimization, Springer, Berlin, 1992. [13] V. Utkin, "Variable structure systems with sliding modes," IEEE Trans. on Auto. Cont., vol. 22, no. 2, pp. 212-222, Apr. 1977.
[14] M. H. Khooban and M. R. Soltanpour, "Swarm optimization tuned fuzzy sliding mode control design for a class of nonlinear systems in presence of uncertainties," J. Intel. and Fuzz. Sys., vol. 24, no. 2, pp. 383-394, Mar. 2013.
[15] M. R. Soltanpour, B. Zolfaghari, M. Soltani, and M. H. Khooban, "Fuzzy sliding mode control design for a class of nonlinear systems with structured and unstructured uncertainties," Int. J. Inn. Com. Inf. and Cont., vol. 9, no. 7, pp. 2713-2726, Jun. 2013.
[16] M. R. Soltanpour, M. H. Khooban, and M. Soltani, "Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties," J. of Rob., vol. 32, no. 3, pp. 433-446, Aug. 2014.
[17] M. Veysi and M. R. Soltanpour, "Voltage-base control of robot manipulator using adaptive fuzzy sliding mode control," Int. J. Fuzz. Sys., vol. 19, no. 5, pp. 1430-1443, Aug. 2017.
[18] J. Fei and Z. Yuan, "Dynamic sliding mode control of MEMS gyroscope," in Proc. IEEE Int. Conf. on Cont. App., pp. 437-442, Hyderabad, India, 28-30 Aug. 2013.
[19] C. Batur, T. Sreeramreddy, and Q. Khasawneh, "Sliding mode control of a simulated MEMS gyroscope," ISA Trans., vol. 45, no. 1, pp. 99-108, Jan. 2006.
[20] C. L. Kuo, H. T. Yau, C. H. Lin, and C. K. Tsui, "Fuzzy sliding mode control for a gyroscope system," in Proc. IEEE Int. Conf. on Mech. and Auto., pp. 133-137, Chengdu, China, 5-8, Aug. 2012.
[21] J. Ren, R. Zhang, and B. Xu, "Adaptive fuzzy sliding mode control of MEMS gyroscope with finite time convergence," J. of Sen., vol. 12, no. 4, pp. 20-28, Oct. 2016.
[22] X. Liang, J. Fei, and Y. Xue, "Adaptive fuzzy control of MEMS gyroscope using global fast terminal sliding mode approach," in Int. Conf. on Cont. and Rob. Eng., pp. 109-112, Bangkok, Thailand, 1-3 Apr. 2017.
[23] J. Fei and F. Chowdhury, "Robust adaptive sliding mode controller for triaxial gyroscope," in Proc. IEEE Int. Conf. on Deci. and Cont. pp. 5574-5579, Shanghai, China, 15-18 Dec. 2009.
[24] J. Fei, "Robust adaptive vibration tracking control for a MEMS vibratory gyroscope with bound estimation," IET Cont. Theo. App., vol. 4, no. 6, pp. 1019-1026, Jun. 2010.
[25] S. Wang and J. Fei, "Robust adaptive sliding mode control of MEMS gyroscope using T-S fuzzy model," Non. Dyn., vol. 5, no. 10, pp. 72-83, Jun. 2014.
[26] Y. Chu and J. Fei, "Adaptive global sliding mode control for MEMS gyroscope using RBF neural network," Math. Prob. in Eng., vol. 10, no. 4, pp. 123-132, Mar. 2015.
[27] R. Zhang, T. Shao, W. Zhao, A. Li, and B. Xu, "Sliding mode control of MEMS gyroscopes using composite learning," Neurocomputing, vol. 275, no. 4, pp. 2555-2564, Jan. 2018.
[28] M. Rahmani and M. Habibur Rahman, A New adaptive Fractional Sliding Mode Control of a MEMS Gyroscope, Microsystem Technologies, https:// doi.org/ 10.1007/s00542-018-4212-8, 2018.
[29] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant, "Smooth second-order sliding modes: missile guidance application," Automatica, vol. 43, no. 8, pp. 1470-1476, Aug. 2007.
[30] H. K. Khalil, Nonlinear Systems, Prentice Hall, USA, 2002.