بهینهسازی انتخاب و ترکیب وبسرویسها بر اساس ویژگیهای کیفی با در نظر گرفتن وابستگی، ناسازگاری و همبستگی بین وبسرویسها
محورهای موضوعی : مهندسی برق و کامپیوترمهدی فرزندوی 1 , فريدون شمس 2 *
1 - دانشگاه شهید بهشتی
2 - دانشگاه شهيد بهشتي
کلید واژه: الگوریتم ژنتیکانتخاب وبسرویسترکیب وبسرویسناسازگاریهمبستگیوابستگیوبسرویسویژگی کیفی,
چکیده مقاله :
امروزه تغییرات مداوم در نیازمندیهای مشتریان به عنوان اصلیترین چالش پیش روی سازمانها است، معماری سرویسگرا به عنوان یک راهحل عملی برای رفع این مشکل برای سازمانهای سرویسگرا مطرح میشود. در معماری سرویسگرا انتخاب و ترکیب سرویسها برای پاسخگویی سریع به نیازمندیهای پیچیده مشتریان در دسترس سازمانهای سرویسگرا قرار میگیرد. سازمانها برای پاسخگویی سریعتر به نیازمندیهای پیچیده و متغیر مشتریان از سرویسهای آماده و برونسازمانی استفاده میکنندکه یکی از فناوریهای نوظهور در این زمینه وبسرویسها هستند. با گسترش تمایل سازمانها به استفاده از وبسرویسها، به مرور زمان تأمینکنندگان وبسرویسها افزایش پیدا کردند و به همین دلیل وبسرویسهایی با عملکرد یکسان و ویژگیهای کیفی متفاوت گسترش یافتند، بنابراین مسئله انتخاب وبسرویس با بهترین ویژگی کیفی برای سازمانها اهمیت پیدا کرد. از طرفی سازمانها تنها با یک وبسرویس نمیتوانند نیازمندیهای پیچیده مشتریان را پاسخ دهند، به همین دلیل نیازمند ترکیب چندین وبسرویس با هم هستند. از طرفی دیگر با افزایش وبسرویسها با عملکردهای متفاوت، در ترکیب آنها، همبستگی، وابستگی و ناسازگاری بین وبسرویسها نیز گسترش مییابد ولی تاکنون روشی ارائه نشده که وبسرویسهای برتر را بر اساس ویژگیهای کیفی انتخاب کند و ترکیب آنها با هم، وابستگی، ناسازگاری و همبستگی بین وبسرویسها را نقض نکند. در این مقاله سعی میکنیم از روشهای قبلی که به وابستگی یا ناسازگاری یا همبستگی در حالتهای ساده ترکیب وبسرویسها پرداختهاند، استفاده کنیم و یک روش جامع پیشنهاد دهیم تا این که حالتهای پیچیدهای که از ترکیب وبسرویسها ممکن است رخ دهد را نیز پشتیبانی کنیم و وبسرویس مرکب مناسب را از نظر ویژگیهای کیفی با در نظر گرفتن وابستگی، ناسازگاری و همبستگی بیابیم.
Today, the continuous changes in customer requirements are the main challenges faced by enterprises. Service-oriented architecture is considered as a practical solution to solve this problem for service-oriented enterprises. In the service-oriented architecture, selection and composition of services to quickly respond to complex customer requirements is available to service-oriented enterprises. Enterprises use ready-to-use and outsourced services to respond more quickly to the complex and changing needs of customers. One of the emerging technologies in this area is web services. By expanding the desire of enterprises to use web services, overtime web services providers increased. For this reason, Web services with the same functionality and different qualities were expanded. Therefore, the issue of choosing a web service with the best quality for enterprises is important. On the other hand, enterprises with only one web service cannot meet the complex requirements of customers; therefore, they need to composite multiple web services together. In addition, with the increase of web services with different functions, correlation, dependency and conflict between Web services also expand in their composition. But so far, there is no way to choose the best web services based on the quality of service(QoS) and also their composition does not violate the dependency, conflict and correlation between web services. In this paper, we try to make use of previous methods that consider dependency or conflict or correlation in simple modes of web services composition. We will improve all these methods in a comprehensive approach and support complex situations that may arise from the composition of web services and find the suitable composite web service by considering dependency, conflict, and correlation between Web services.
[1] S. Y. Lina, C. H. Laia, C. H. Wub, and C. C. Lob, "A trustworthy QoS-based collaborative filtering approach for web service discovery," J. of Systems and Software, vol. 93, pp. 217-228, Jul. 2014
[2] P. Wang, K. M. Chao, and C. C. Lo, "On optimal decision for QoS-aware composite service selection," Expert Systems with Applications, vol. 37, no. 1, pp. 440-449, Jan. 2010.
[3] A. E. Yilmaz and K. Pinar, "Improved genetic algorithm based approach for QoS aware web service composition," in Proc. IEEE Int. Conf. on Web Services, ICWS’14, pp. 463-470, Anchorage, AK, USA, 27 Jun.-2 Jul. 2014.
[4] D. Ardagna and B. Pernici, "Adaptive service composition in flexible processes," IEEE Trans. on Software Engineering, vol. 33, no. 6, pp. 369-384, Jun. 2007.
[5] U. Shehu, G. Epiphaniou, and G. A. Safdar, "A survey of QoS-aware web service composition techniques," International J. of Computer Applications, vol. 89, no. 12, pp. 10-17, Mar. 2014.
[6] M. A. Amiri and H. Serajzadeh, "QoS aware web service composition based on genetic algorithm," in Proc. 5th Int. Symp. on Telecommunications, IST’10,, pp. 502-507, Tehran, Iran, 4-6 Dec. 2010.
[7] M. Alrifai, T. Risse, and W. Nejdl, "A hybrid approach for efficient web service composition with end-to-end QoS constraints," ACM Trans. on the Web, vol. 6, no. 2, Article 7, May 2012.
[8] L. Wang, J. Shen, and J. Yong, "A survey on bio-inspired algorithms for web service composition," in Proc. IEEE 16th Int. Conf. on Computer Supported Cooperative Work in Design, CSCWD12, pp. 569-574, Wuhan, China, 23- 25 May 2012.
[9] D. Silva, A. Sawczuk, E. Moshi, H. Ma, and S. Hartmann, "A QoS-aware web service composition approach based on genetic programming and graph databases," in Proc. Int. Conf. on Database and Expert Systems Applications, DEXA'17, pp. 37-44, Lyon, France, 28-31 Aug. 2017.
[10] J. Zhou and X. Yao, "A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition," The International J. of Advanced Manufacturing Technology, vol. 88, no. 9-12, pp. 3371-3387, Feb. 2017.
[11] M. Zavvar, et al., "Measuring service quality in service-oriented architectures using a hybrid particle swarm optimization algorithm and artificial neural network (PSO-ANN)," in Proc. 3th Int. Conf. on Web Research, ICWR’17, pp. 78-83, Tehran, Iran, 19-20 Apr. 2017.
[12] A. Jula, Z. Othman, and E. Sundararajan, "Imperialist competitive algorithm with PROCLUS classifier for service time optimization in cloud computing service composition," Expert Systems with Applications, vol. 42, no. 1, pp. 135-145, Jan. 2015.
[13] ش. پویا، "ترکیب وبسرویسها بر اساس معیارهای کیفی سرویس با استفاده از الگوریتم ژنتیک،" اولین همايش ملی رویکردهای نوین در مهندسی کامپیوتر و بازیابی اطلاعات ایران، 8 صص.، رشت، ايران، 17-17 مهر ۱۳۹۲.
[14] D. Wang, Y. Yang, and Z. Mi, "A genetic-based approach to web service composition in geo-distributed cloud environment," Computers & Electrical Engineering, vol. 43, no. C, pp. 129-141, Apr. 2015.
[15] F. Gao, E. Curry, M. I. Ali, S. Bhiri, and A. Mileo, "Qos-aware complex event service composition and optimization using genetic algorithms," in Proc. Int. Conf. on Service-Oriented Computing, ICSOC'14, pp. 386-393, Paris, France, 3-6 Nov. 2014.
[16] M. C. Jaeger and G. Muhl, "QoS-based selection of services: the implementation of a genetic algorithm," in Proc. Communication in Distributed Systems, 15 ITG-GI Symp., 12 pp., Bern, Switzerland, 26 Feb. 2 Mar.. 2007.
[17] S. Su, C. Zhang, and J. Chen, "An improved genetic algorithm for web services selection," in Proc. 7th IFIP WG 6.1 Int. Conf. on Distributed Applications and Interoperable Systems, pp. 284-295 Paphos, Cyprus, 6-8 Jun. 2007.
[18] M. Tang and L. Ai, "A hybrid genetic algorithm for the optimal constrained web service selection problem in web service composition," in Proc. IEEE Congress on Evolutionary Computation, 8 pp., Barcelona, Spain, 18-23 Jul. 2010.
[19] G. Canfora and M. Di Penta, "A framework for QoS-aware binding and re-binding of composite web services," J. of Systems and Software, vol. 81, no. 10, pp. 1754-1769, Oct. 2008.
[20] F. Mardukhi, N. Nematbakhsh, K. Zamanifar, and A. Barati, "QoS decomposition for service composition using genetic algorithm," Applied Soft Computing, vol. 13, no. 7, pp. 3409-3421, Jul. 2013.
[21] L. J. Zhang and B. Li, "Requirements driven dynamic services composition for web services and grid solution," J. of Grid Computing, vol. 2, no. 2, pp. 121-140, Jun. 2004.
[22] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, "An approach for QoS-aware service composition based on genetic algorithms," in Proc. of the 7th Annual Conf. on Genetic and Evolutionary Computation, ACM, pp. 1069-1075, Washington DC, USA, 25-29 Jun. 2005.
[23] S. Deng, H. Wu, D. Hu, and J. Zhao, "Service selection for composition with QoS correlations," IEEE Trans. on Services Computing, vol. 9, no. 2, pp. 291-302, Mar.-Apr. 2016.
[24] L. Ai and M. Tang, "A penalty-based genetic algorithm for QoS-aware web service composition with inter-service dependencies and conflicts," in Proc. IEEE Int. Conf. on Computational Intelligence for Modelling Control & Automation, pp. 738-743, Vienna, Austria, 10-12 Dec. 2008.