زمانبندی پاینده مبتنی بر درخت در شبکههای مش بیسیم خورشیدی
محورهای موضوعی : مهندسی برق و کامپیوترهادی برقی 1 , سیدوحید ازهری 2 *
1 - دانشگاه علم و صنعت ايران
2 - دانشگاه علم و صنعت ایران
کلید واژه: پایندگی انرژیچرخه کاریزمانبندیشبکه مش بیسیم,
چکیده مقاله :
در بسیاری از کاربردهای شبکههای مش بیسیم به دلیل عدم دسترسی به منبع انرژی دایم و استفاده از باتری و تجهیزات برداشتکننده انرژی طراحی بر مبنای پایندگی انرژی بسیار حایز اهمیت است. تنظیم چرخه کاری و به خواب بردن گرههای شبکه در بخشی از دوره کاری، روشی برای حفظ انرژی و تضمین پایندگی است. در این حالت برای تبادل داده بین گرههای همسایه به پروتکلهایی برای هماهنگی خواب نیاز است. در برخی کاربردهای این شبکهها مانند کاربرد نظارت تصویری نیاز است که داده از بخشهای مختلف شبکه جمعآوری شود. توپولوژی درخت در این کاربردها گزینه مناسبی است. یک روش ساده برای هماهنگی خواب در توپولوژی درخت الگوریتم زمانبندی تقسیم زمان (TIME-SPLIT) است که در آن زمان هر گره به طور مساوی بین فرزندان تقسیم میشود. الگوریتم زمانبندی تقسیم زمان پیشنهادشده مسئله پایندگی انرژی و محدودیت انرژی گرهها را در نظر نمیگیرد. ما در این مقاله به منظور ایجاد پایندگی انرژی در شبکههای مش بیسیم مبتنی بر توپولوژی درخت در الگوریتم زمانبندی تقسیم زمان محدودیت چرخه کاری گرهها را اضافه کردهایم. در شرایطی که وضعیت انرژی فرزندان متفاوت باشد تقسیم مساوی زمان به عدم کارایی شبکه میانجامد. به منظور بهبود کارایی و گذردهی شبکه دو الگوریتم زمانبندی بر مبنای الگوریتم تقسیم زمان که شرایط انرژی و ترافیک فرزندان را در نظر میگیرند ارائه کردهایم. در الگوریتم پیشنهادی اول تقسیم زمان به نسبت چرخه کاری فرزندان هر گره انجام میگیرد. در الگوریتم دوم تقسیم زمان به صورت پویا و به نسبت ترافیک فرزندان است و همچنین پذیرش تماس بر مبنای انرژی مصرفی اتصالات و بر اساس طول اتصالات به طور دقیقتری انجام میشود. نتایج شبیهسازی که به وسیله شبیهساز شبکه 3NS انجام شده نشان میدهد که در شرایط عدم توازن در انرژی و ساختار درخت، یعنی حالتی که فرزندان یک گره دارای انرژی یکسان یا زیردرخت تقریباً مشابه نیستند، روشهای پیشنهادی به میزان قابل توجهی (بیش از حدود 60%) ترافیک عبوری را افزایش میدهند.
In many applications of wireless mesh networks, due to the lack of access to a permanent source of energy and the use of battery and energy harvesting equipment, energy sustainable design is very important. Duty-cycle adjustment, putting the node into sleep mode in some parts of the working period, is a method for energy saving and sustainability assurance. In this case, to exchange data between neighboring nodes, protocols for sleep scheduling are needed. In some applications of these networks, such as video surveillance applications, it is necessary to collect data from different parts of the network. Tree topology is a good option for these applications. A simple method for coordinating sleep in a tree topology is the TIME-SPLIT algorithm, at which the working time of each node is evenly divided among its children. The proposed TIME-SPLIT scheduling algorithm does not consider the node energy limitations. In this paper, we have added the nodes duty-cycle constraint in the TIME-SPLIT algorithm to guarantee energy sustainability in tree-based wireless mesh networks. In situations where the energy status of the children is different, equal division of time leads to network inefficiency. To improve network efficiency and throughput, we provide two scheduling algorithms that take into account the conditions of the children's energy and traffic. In the first proposed algorithm, the time division is performed in relation to the duty-cycle of the children of each node. In the second algorithm, the time division is dynamically and in proportion to the traffic of the children, and the connection acceptance is more precisely performed based on its energy consumption during its lifespan. The simulation results performed by the NS3 network simulator show that in energy and tree structure imbalance conditions, where children of a node have different energy or sub tree, the proposed methods significantly (more than about 60%) increase the network’s total delivered traffic.
[1] I. F. Akyildiz, X. Wang, and W. Wang, "Wireless mesh networks: a survey," Comput. Networks, vol. 47, no. 4, pp. 445-487, Mar. 2005.
[2] IEEE Standards Association, 802.11-2012-IEEE Standard for Information Technology Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks Specific Requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY), Sept. 2012.
[3] H. Barghi and S. V. Azhari, "A practical sleep coordination and management scheme with duty cycle control for energy sustainable IEEE 802.11s wireless mesh networks," Wirel. Networks, vol. 21, no. 2, pp. 1-26, Feb. 2018.
[4] M. Malekpour Shahraki, H. Barghi, S. V. Azhari, and S. Asaiyan, "Distributed and energy efficient scheduling for IEEE802.11s wireless EDCA networks," Wirel. Pers. Commun., vol. 90, no. 1, pp. 301-323, 2016.
[5] B. Hohlt, L. Doherty, and E. Brewer, "Flexible power scheduling for sensor networks," in Proc. of the 3rd Int. Symp. on Information Processing in Sensor Networks, IPSN'04, p. 205-214, 2004.
[6] E. S. Kim and C. A. Glass, "Perfect periodic scheduling for three basic cycles," J. of Scheduling, vol. 17, no. 1, pp. 47-65, Feb. 2014. [7] E. S. Kim and C. A. Glass, "Perfect periodic scheduling for binary tree routing in wireless networks," Eur. J. Oper. Res., vol. 247, no. 2, pp. 389-400, 1 Dec. 2015.
[8] P. Shrivastava and S. B. Pokle, "Energy efficient scheduling strategy for data collection in wireless sensor networks," in Proc. Int. Conf. on Electronic Systems, Signal Processing and Computing Technologies, pp. 170-173, Nagpur, India, 9-11 Jan. 2014.
[9] D. Ghosh, A. Gupta, and P. Mohapatra, "Admission control and interference-aware scheduling in multi-hop WiMAX networks," in Proc. IEEE Int. Conf. on Mobile Adhoc and Sensor Systems, MASS'07, 9 pp., Pisa, Italy, 8-11 Oct. 2007.
[10] J. Zou and D. Zhao, "Real-time CBR traffic scheduling in IEEE 802.16-based wireless mesh networks," Wirel. Networks, vol. 15, no. 1, pp. 65-72, Jan. 2009.
[11] I. Rhee, A. Warrier, J. Min, and L. Xu, "DRAND: distributed randomized TDMA scheduling for wireless ad hoc networks," IEEE Trans. Mob. Comput., vol. 8, no. 10, pp. 190-201, Oct. 2009.
[12] Z. Wang, J. Li, L. Kang, C. Wang, and Y. Zhang, "Low-latency TDMA sleep scheduling in wireless sensor networks," in Proc. 2015 IEEE/CIC Int. Conf. on Communications in China, ICCC'15, 6 pp., Shenzhen, China, 2-4 Nov. 2016.
[13] A. Kansal, J. Hsu, and S. Zahedi, "Power management in energy harvesting sensor networks," ACM Trans. Embed. Comput. Syst., vol. 6, no. 4, pp. 1-35, Sept. 2007.
[14] C. M. Vigorito, D. Ganesan, and A. G. Barto, "Adaptive control of duty cycling in energy-harvesting wireless sensor networks," in Proc. IEEE Int. Conf. on Sensing, Communication, and Networking, IEEE SECON'07, pp. 21-30, San Diego, CA, USA, 18-21 Jun. 2007.
[15] X. Fafoutis and N. Dragoni, "ODMAC: an on-demand MAC protocol for energy harvesting-wireless sensor networks," in Proc. of the 8th ACM Symp. on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, PE-WASUN'11, pp. 49-56, Miami Beach, FL, USA, 31 Oct.- 4 Nov. 2011.
[16] S. Tang, J. Wu, G. Chen, C. Wang, X. Liu, T. Li, and X. Y. Li, "On minimum delay duty-cycling protocol in sustainable sensor network," in Proc. Int. Conf. on Network Protocols, ICNP'12, 9 pp., Oct. 2012.
[17] B. Buchli, F. Sutton, J. Beutel, and L. Thiele, "Dynamic power management for long-term energy neutral operation of solar energy harvesting systems," in Proc. 12th ACM Conf. Embedded Networked Sensor Systems, SenSys'14, pp. 31-45, Memphis, TN, USA, 3-6 Nov. 2014.
[18] L. X. Cai, T. H. Luan, J. W. Mark, and H. V. Poor, "Sustainability analysis and resource management for wireless mesh networks with renewable energy supplies," IEEE J. Sel. Areas Commun., vol. 32, no. 2, pp. 345-355, Feb. 2014.
[19] M. K. Jakobsen, J. Madsen, and M. R. Hansen, "DEHAR: a distributed energy harvesting aware routing algorithm for ad-hoc multi-hop wireless sensor networks," in Proc. IEEE Int. Symp. on World of Wireless Mobile and Multimedia Networks, WoWMoM'10, 9 pp., Montrreal, QC, Canada, 14-17 Jun. 2010.
[20] P. K. Srinivas, "SLR: sustainable longevity routing protocol for ad hoc networks," in Proc. IEEE Int. Conf. on, Signal Processing, Communication and Computing, ICSPCC'13, 6 pp., KunMing, China, 5-8 Aug. 2013.
[21] C. Moser, J. Chen, and L. Thiele, "An energy management framework for energy harvesting embedded systems," ACM J. Emerg. Technol. Comput. Syst., vol. 6, no. 2, Article No. 7, 21 pp., Jun. 2010.
[22] X. Shen, et al., "EFCon: energy flow control for sustainable wireless sensor networks," Ad Hoc Networks, vol. 11, no. 4, pp. 1421-1431, Jun. 2011.
[23] G. H. Badawy, A. A. Sayegh, and T. D. Todd, "Fair flow control in solar powered WLAN mesh networks," in Proc. IEEE Wireless Communications and Networking Conf., WCNC'09, 6 pp., Budapest, Hungary, 5-8 Apr. 2009.
[24] D. P. Consumption, D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, "Demystifying 802.11n power consumption," in Proc. of the Workshop on Power Aware Computing and Systems HotPower'10, Article No. 1, pp. 2-6, Vancouver, BC, Canada, 2010.