بررسی اثر تخمینگر کانال MIMO در طراحی پیشکدگذار روی شبکههای حسگر بیسیم
محورهای موضوعی : مهندسی برق و کامپیوترهستی رستمی 1 * , ابوالفضل فلاحتی 2
1 - دانشگاه علم و صنعت ایران
2 - دانشگاه علم و صنعت ایران
کلید واژه: پیشکدگذارتخمین توزیعشدهتخمین کانالشبکههای حسگر بیسیم,
چکیده مقاله :
یکی از مهمترین کاربردهای شبکههای حسگر بیسیم تخمین پدیده ناشناخته میباشد. در تخمین توزیعشده روی شبکه حسگر بیسیم از فعالیت مشارکتی و اطلاعات پراکنده گرههای حسگرها استفاده میشود. طراحی پیشکدگذارها در گرههای حسگر به منظور ارائه تخمینی نزدیکتر به مقدار واقعی استفاده میشود. مسئله طراحی پیشکدگذار یک مسئله بهینهسازی است. از آنجایی که کانال در این شبکهها لینک بیسیم است که طبیعتی تصادفی دارد لذا فرض دسترسبودن اطلاعات کامل کانال در این نوع شبکهها فرض صحیحی به نظر نمیرسد. در فرایند طراحی ماتریسهای پیشکدگذار در گرههای حسگر به اطلاعات کامل کانال نیاز میباشد. در این تحقیق اثر تخمین کانال بر فرایند طراحی ماتریس پیشکدگذار و تخمین پدیده ناشناخته بررسی میشود. در مسئله تخمین کانال از روش تخمین با دنباله آموزشی استفاده میشود و کانال با دو معیار LS و MMSE تخمین زده خواهد شد. از آنجایی که توان در شبکههای حسگر بیسیم قید اساسی میباشد لذا در این بررسی دنباله آموزشی بهینه و پیشکدگذار بهینه تحت قید توان طراحی میشوند.
One of the most important applications of wireless sensor networks was to estimate the unknown phenomenon. The cooperative activities of wireless sensors and scattered information of sensor nodes over network are used to decentralized estimation. Precoder design done on the sensor nodes in order to provide an optimal estimate of the actual amount. Precoder design is an optimization problem. Since the channel is wireless link on the wireless sensor networks. Therefore, assuming the access of full channel state information isn't correct in this network. Since the perfect channel state information is required in the precoder design process, so the effects of the channel estimation investigated on precoder design process. On the issue of channel estimation, channel estimated by using of the known training sequence method with LS and MMSE criteria. Since power restriction is the key subject in the wireless sensor networks, therefore in this study power restriction considered in the channel estimation and precoder design problem.
[1] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, "Detection, classification, and tracking of targets," IEEE Signal Process. Mag, vol. 19, no. 2, pp. 17-29, Mar. 2002.
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Commun. Mag, vol. 40, no. 8, pp. 102-114, Aug. 2002.
[3] J. J. Xiao, A. Xiao, Z. Q. Luo, and G. B. Giannakis, "Distributed compression-estimation using wireless sensor networks," IEEE Signal Process. Mag, vol. 23, no. 4, pp. 27-41, Jul. 2006.
[4] Z. Zhao, A. Swami, and L. Tong, "The interplay between signal processing and networking in sensor networks," IEEE Signal Process. Mag, vol. 23, no. 4, pp. 84-93, Jul. 2006.
[5] G. Hug, J. Mohammadi, and J. M. F. Moura, "Distributed state estimation and energy management in smart grids: a consensus + innovations approach," IEEE Signal Process. Mag, vol. 8, no. 6, pp. 1022-1038, Dec. 2014.
[6] J. J. Xiao, S. Cui, Z. Q. Luo, and A. J. H. Goldsmit, "Linear coherent decentralized estimation," IEEE Trans. Signal Process, vol. 56, no. 2, pp. 757-770, Feb. 2008.
[7] A. S. Arifin and T. Ohtsuki, "Linear precoding for distributed estimation of correlated sources in WSN MIMO system," in Proc. IEEE 77th Vehicular Technology Conf., 5 pp., Dresden, Germany, 2-5 Jun. 2013.
[8] M. Gastpar, "Uncoded transmission is exactly optimal for a simple gaussian "sensor" network," IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 5247-5251, Nov. 2008.
[9] A. S. Behbahani, A. M. Eltawil, and H. Jafarkhani, "Linear decentralized estimation of correlated data for power-constrained wireless sensor networks," IEEE Trans. Signal Process, vol. 60, no. 11, pp. 6003-6016, Nov. 2012.
[10] A. Goyal, K. Dey, and A. K. Jagannatham, "Optimal transmit precoding for distributed estimation in correlated wireless sensor networks," in Proc. IEEE Int. Conf. on Electronics, Computing and Communication Technologies, CONECCT’14, 6 pp., Bangalore, India, 6-7 Jan. 2014.
[11] J. Fang, H. Li, Z. Chen, and S. Li, "Optimal precoding design and power allocation for decentralized detection of deterministic signals," IEEE Trans. on Signal Processing, vol. 60, no. 6, pp. 3149-3163, Jun. 2012.
[12] J. Fang, H. Li, Z. Chen, and Y. Gong, "Joint precoder design for distributed transmission of correlated sources in sensor networks," IEEE Trans. on Wireless Communications, vol. 12, no. 6, pp. 2918-2929, Jun. 2013.
[13] A. S. Behbahani, A. M. Eltawali, and H. Jafarkhoni, "Linear estimation of correlated vector sources for wireless sensor networks with fusion center," IEEE Wireless Commun. Lett, vol. 1, no. 4, pp. 400-403, Aug. 2012.
[14] H. Senol and C. Tepedelenlioglu, "Performance of distributed estimation over unknown parallel fading channels," IEEE Trans. Signal Process, vol. 56, no. 12, pp. 6057-6068, Dec. 2008.
[15] S. Cui, J. J. Xiao, A. J. Goldsmith, Z. Q. Luo, and H. V. Poor, "Estimation diversity and energy efficiency in distributed sensing," IEEE Trans. Signal Process, vol. 55, no. 9, pp. 4683-4695, Sept. 2007.
[16] I. Bahceci and A. K. Khandani, "Linear estimation of correlated data in wireless sensor networks with optimum power allocation and analog modulation," IEEE Trans. Commun, vol. 56, no. 7, pp. 1146-1156, Jul. 2008.
[17] M. K. Banavar, C. Tepedelenlioglu, and A. Spanias, "Estimation over fading channels with limited feedback using distributed sensing," IEEE Trans. Signal Process, vol. 58, no. 1, pp. 414-425, Jan. 2010.
[18] K. Liu, H. E. Gamal, and A. M. Sayeed, "On optimal parametric field estimation in sensor networks," in Proc. of IEEE/SP 13th Workshop on Statistics and Signal Processing, pp. 1170-1175, Bordeaux, France, 17-20 Jul. 2005.
[19] N. K. D. Venkategowda and A. K. Jagannatham, "Optimal minimum variance distortionless precoding (MVDP) for decentralized estimation in MIMO wireless sensor networks," IEEE Signal Process. Lett, vol. 22, no. 6, pp. 696-700, Jun. 2015.
[20] C. H. Wu and C. A. Lin, "Linear coherent distributed estimation over unknown channels," Signal Processing, Elsevier, vol. 91, no. 4, pp. 1000-1011, Apr. 2011.
[21] M. Biguesh and A. B. Gershman, "MIMO channel estimation: optimal training and tradeoffs between estimation techniques," in Proc. IEEE Int. Conf. on Communication, vol. 5, pp. 2658-2662, Jun. 2004.