طراحي بهينه موتور آهنرباي دایم با هدف افزايش چگالي گشتاور در کاربرد فلایویل: طراحي، تحليل المان محدود و ساخت
محورهای موضوعی : مهندسی برق و کامپیوترامید صفدرزاده 1 * , حسین ترکمن 2 , محمد مهدوی فخر 3
1 - دانشگاه شهید بهشتی
2 - دانشگاه شهید بهشتی
3 - دانشگاه شهید بهشتی
کلید واژه: طراحي موتور آهنرباي دایمبهينهسازيالگوريتم ازدحام ذراتتحليل المان محدودچگالي گشتاور بيشينه,
چکیده مقاله :
طراحي بهينه موتورهاي الکتريکي به دليل وجود پارامترهاي طراحي مکانيکي، الکتريکي و مغناطيسي يک مسأله پيچيده بهينهسازي تلقي ميشود، اگرچه اخيراً به واسطه به کارگيري روشهاي بهينهسازي هوشمند قابل حصول شده است. در اين مقاله طراحي بهينه موتور آهنرباي دایم بدون جاروبک رتور خارجي براي کاربرد در ذخيرهساز فلایویل با استفاده از الگوريتم ازدحام ذرات (PSO) به منظور دستيابي به چگالي گشتاور بيشينه در یک بازه سرعت انجام گرفته است. ابتدا معادلات طراحي موتور که مورد استفاده توابع ارزيابي الگوريتم ميباشند ارائه شدهاند و سپس روند پيادهسازي الگوريتم براي بهينهسازي موتور با تابع هدف چگالي گشتاور تشريح شده است. روند بهينهسازي تابع به همراه تعريف محدوديتهاي طراحي و مقادير اوليه پارامترهاي موتور به طراحي بهينه ابعاد آن منجر شده است. نتايج طراحي و بهينهسازي با استفاده از روش آناليز المان محدود (FEA) مورد ارزيابي قرار گرفته و پارامترهای عملکردی ماشين محاسبه و تحليل شدهاند. در نهايت مدل ساختهشده موتور به همراه نتايج عملي ارائه شده که نشاندهنده کاربرديبودن الگوریتم پيشنهادشده ميباشد.
Optimum design of electrical motors may be considered as a complex optimization problem due to the wide variety of mechanical, electrical, electromagnetics parameters, although recently it can be accomplished utilizing heuristic optimization algorithms. In this paper optimum design of an out-runner PM BLDC motor for flywheel energy storage applications is performed. The optimization utilized particle swarm optimization (PSO) algorithm to achieve maximum torque density. Accordingly, the motor design equations are employed in the fitness function of the algorithm. Based on the random initial values and respecting the designs constraints, the optimum design is achieved. Effectiveness of the algorithm results are verified by finite element analysis (FEA) and motor operating parameters are obtained and analyzed. Finally, the prototype of the motor is fabricated and experimental results are demonstrated to show the applicability of the model and analysis.
[1] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: a critical review," Progress in Natural Science, vol. 19, no. 3, pp. 291-312, Mar. 2009.
[2] I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, vol. 13, no. 6, pp. 1513-1522, Aug. 2009.
[3] R. Pena-Alzola, R. Sebastian, J. Quesada, and A. Colmenar, "Review of flywheel based energy storage systems," in Proc .Int. Conf. on Power Engineering, Energy and Electrical Drives, POWERENG'11, 6 pp., Malaga, Spain, 11-13 May 2011.
[4] ح. خانبابایی گردشی و ح. ترکمن، "کنترل بهبودیافته سرعت موتور سوئیچشونده رلوکتانسی با استفاده از هدایت پیوسته جریان در سرعت بالا،" مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صص. 69-79، بهار 1395.
[5] B. Bolund, H. Bernhoff, and M. Leijon, "Flywheel energy and power storage systems," Renewable and Sustainable Energy Reviews, vol. 11, no. 2, pp. 235-258, Feb. 2007.
[6] H. Kan, K. Chau, and M. Cheng, "Development of doubly salient permanent magnet motor flywheel energy storage for building integrated photovoltaic system," in proc. 16th Annual IEEE on Applied Power Electronics Conf. and Exposition, APEC'01, vol. 1, pp. 314-320, Aug. 2001.
[7] م. اره پناهی و و. سنایی تراب، "طراحي بهينه موتور مغناطيس دایم داخلي برای افزایش محدوده تضعيف شار و کاهش حجم آهنربای مصرفی،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 14، شماره 1- الف، صص. 61-66، بهار 1395.
[8] M. Lukaniszyn, M. Jagiela, and R. Wrobel, "Optimization of permanent magnet shape for minimum cogging torque using a genetic algorithm," IEEE Trans. on Magnetics, vol. 40, no. 2, pp. 1228-1231, Mar. 2004.
[9] T. K. Chung, S. K. Kim, and S. Y. Hahn, "Optimal pole shape design for the reduction of cogging torque of brushless DC motor using evolution strategy," IEEE Trans. on Magnetics, vol. 33, no. 2, pp. 1908-1911, Mar. 1997.
[10] K. Abbaszadeh, F. R. Alam, and S. Saied, "Cogging torque optimization in surface-mounted permanent-magnet motors by using design of experiment," Energy Conversion and Management, vol. 52, no. 10, pp. 3075-3082, Sept. 2011.
[11] U. Nagalingam, B. Mahadevan, K. Vijayarajan, and A. P. Loganathan, "Design optimization for cogging torque mitigation in brushless DC motor using multi-objective particle swarm optimization algorithm," International J. for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34, no. 4, pp. 1302-1318, Jul. 2015.
[12] Q. Li, M. Dou, B. Tan, H. Zhang, and D. Zhao, "Electromagnetic-thermal integrated design optimization for hypersonic vehicle short-time duty PM brushless DC motor," International J. of Aerospace Engineering, vol. 9, no. 4, 9 pp., Aug. 2016.
[13] X. Ding, G. Liu, M. Du, H. Guo, H. Qiao, and C. Gerada, "Development of an axial flux MEMS BLDC micromotor with increased efficiency and power density," Energies, vol. 8, no. 7, pp. 6608-6626, Jun. 2015.
[14] R. Nasiri-Zarandi, M. Mirsalim, and A. Cavagnino, "Analysis, optimization, and prototyping of a brushless DC limited-angle torque-motor with segmented rotor pole tip structure," IEEE Trans. on Industrial Electronics, vol. 62, no. 8, pp. 4985-4993, Aug. 2015.
[15] S. Sadeghi, A. Mohammadpour, and L. Parsa, "Design optimization of a high performance five-phase slotless PMSM," in Proc. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM'14, pp. 6-11, Ischia, Italy, 18-20 Jun. 2014.
[16] H. W. Kim, K. T. Kim, Y. S. Jo, and J. Hur, "Optimization methods of torque density for developing the neodymium free SPOKE-type BLDC motor," IEEE Trans. on Magnetics, vol. 49, no. 5, pp. 2173-2176, May 2013.
[17] ح. حاتمی، م. ب. بناء شریفیان و م. ر. فیضی، "ارائه روش جدید طراحی بهبودیافته ماشینهای مغناطیس دایم شارمحوری سرعتپایین مورد استفاده در خودروهای هیبریدی،" مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 2، صص. 64-51، تابستان 1394.
[18] G. Heinzelmann, G. Liebhard, and H. Rosskamp, "Energy efficient drive train for a high-performance battery chain saw," in Proc. 1st Int. Conf. on Electric Drives Production, EDPC'11, pp. 101-106, Sept.. 2011.
[19] م. حقپرست، ص. تقیپور بروجنی و ع. کارگر، "بهبود ساختار هندسی رتور ماشین سنکرون رلوکتانسی با استفاده ترکیبی از شبکه عصبی، الگوریتم ژنتیک و روش اجزای محدود،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 11، شماره 1- الف، صص. 28-34، بهار 1392.
[20] J. Seo, J. Yoo, and T. Jung, "Design on notch structure of stator tooth to reduce of cogging torque of single-phase BLDC motor," in Proc. 18th Int. Conf. on Electrical Machines and Systems, ICEMS'15, pp. 1475-1478, Oct. 2015.
[21] Y. Li, J. Xing, T. Wang, and Y. Lu, "Programmable design of magnet shape for permanent-magnet synchronous motors with sinusoidal back EMF waveforms," IEEE Trans. on Magnetics, vol. 44, no. 9, pp. 2163-2167, Sept. 2008.
[22] R. McCallum, L. Lewis, R. Skomski, M. Kramer, and I. Anderson, "Practical aspects of modern and future permanent magnets," Annual Review of Materials Research, vol. 44, no. 3, pp. 451-477, Jul. 2014.
[23] R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press, 2009.
[24] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, McGraw-Hill, 1994.
[25] Y. Del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez, and R. G. Harley, "Particle swarm optimization: basic concepts, variants and applications in power systems," IEEE Trans. on Evolutionary Computation, vol. 12, no. 2, pp. 171-195, Apr. 2008.
[26] Y. Duan, R. Harley, and T. Habetler, "Comparison of particle swarm optimization and genetic algorithm in the design of permanent magnet motors," in Proc. 6th IEEE Int. Conf. on Power Electronics and Motion Control, IPEMC'09, pp. 822-825, May 2009.
[27] Y. Duan and D. M. Ionel, "A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study," IEEE Trans. on Industry Applications, vol. 49, no. 3, pp. 1268-1275, May 2013.
[28] Z. Zhu and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Trans. on Energy Conversion, vol. 15, no. 4, pp. 407-412, Dec. 2000.