ارزیابی وجود رزونانس در تخصیص بهینه بانکهای خازنی در شبکههای توزیع بر مبنای الگوریتم بهینهسازی MSPS
محورهای موضوعی : مهندسی برق و کامپیوترمسعود ايوبي 1 , رحمتالله هوشمند 2 * , مهدی ترابيان اصفهاني 3
1 - دانشگاه اصفهان
2 - دانشگاه اصفهان
3 - دانشگاه اشرفي اصفهاني
کلید واژه: الگوريتم MSPSOجايابي خازنهارزونانسفازیسازیهارمونيک,
چکیده مقاله :
یکی از مهمترین مشکلات موجود در شبکههای قدرت، وجود رزونانس در نقاطی از شبکه میباشد که باعث افزایش ناخواسته ولتاژ و جریان و بروز خسارت به تجهیزات ميشود. با توجه به این که با نصب بانک خازنی در شبکه، مشخصه فرکانسی سیستم تغییر کرده و امکان رزونانس افزایش میآید، لازم است این نکته در تخصیص خازنها در شبکه در نظر گرفته شود. در اين مقاله، شاخص جدیدی برای ارزیابی وجود رزونانس ارائه شده و با استفاده از شاخص رزونانس پیشنهادی، روش جديدي براي جايابي بهینه خازنها در محيط هارمونيکي ارائه ميشود. در روش پیشنهادی، ابتدا از آناليز حساسيت استفاده شده تا شینههايي که بيشترين تأثير را بر تلفات و افت ولتاژ شبکه دارند، کانديد خازنگذاري شوند. پس از آن، خازنگذاري بر اساس سطوح بار مختلف و با استفاده از تابع شايستگي معرفيشده انجام ميشود. در تابع شايستگي، از توابع عضويت فازي مربوط به صرفهجويي اقتصادي، انحراف ولتاژ، THD و قيد رزونانس استفاده شده است. روش پيشنهادي با الگوريتم MSPSO، در شبکه 18شینه IEEE پيادهسازي شده است. نتايج به دست آمده، کارامدي اين روش را در مقايسه با روشهاي ديگر نشان ميدهد.
One of the most important problems in power networks is the presence of resonance at some of the buses which leads to an unwanted increase in voltage and current and damage to equipment. Since with installing a capacitor bank in the network, frequency characteristic of the system is changed and resonance is increased, it is necessary to consider this point in allocation of capacitors in the network. In this paper, a new index for evaluating the resonance is presented. Applying the proposed resonance index, a new two-step method for optimal placement of capacitors in a harmonic system is provided. In the first step, a sensitivity analysis is used, then in the second step, the objective function considering technical constraints is optimized using a fuzzy technique. The proposed method is implemented with the MSPSO algorithm on the IEEE 18-bus network. The results show the efficiency of this method in comparison with other methods.
[1] A. Askarzadeh, "Capacitor placement in distribution systems for power loss reduction and voltage improvement: a new methodology," IET Gener. Transm. Distrib., vol. 10, no. 14, pp. 1-8, Oct. 2016.
[2] A. R. AbulWafa, "Optimal capacitor placement for enhancing voltage stability in distribution systems using analytical algorithm and fuzzy-real coded GA," Int. J. Electr. Power Energy Syst., vol. 55, pp. 246-252, Feb. 2014.
[3] M. Mukherjee and S. K. Goswami, "Solving capacitor placement problem considering uncertainty in load variation," Int. J. Electr. Power Energy Syst., vol. 62, pp. 90-94, Nov. 2014.
[4] A. Kavousi Fard and T. Niknam, "Optimal stochastic capacitor placement problem from the reliability and cost views using firefly algorithm," IET Sci. Meas. Technol., vol. 8, no. 5, pp. 260-269, Sep. 2014.
[5] H. S. Ramadan, A. F. Bendary, and S. Nagy, "Particle swarm optimization algorithm for capacitor allocation problem in distribution systems with wind turbine generators," Int. J. Electr. Power Energy Syst., vol. 84, pp. 143-152, Jan. 2017.
[6] M. H. Moradi, A. Zeinalzadeh, Y. Mohammadi, and M. Abedini, "An efficient hybrid method for solving the optimal sitting and sizing problem of DG and shunt capacitor banks simultaneously based on imperialist competitive algorithm and genetic algorithm," Int. J. Electr. Power Energy Syst., vol. 54, pp. 101-111, Jan. 2014.
[7] K. Muthukumar and S. Jayalalitha, "Integrated approach of network reconfiguration with distributed generation and shunt capacitors placement for power loss minimization in radial distribution networks," Appl. Soft Comput. J., vol. 52, pp. 1262-1284, Mar. 2017.
[8] J. Vuletic and M. Todorovski, "Optimal capacitor placement in distorted distribution networks with different load models using penalty free genetic algorithm," Electr. Power Syst. Res., vol. 78, pp. 174-182, Jun. 2016.
[9] M. S. Javadi, A. Esmaeel Nezhad, P. Siano, M. Shafie-khah, and J. P. S. Catalao, "Shunt capacitor placement in radial distribution networks considering switching transients decision making approach," Int. J. Electr. Power Energy Syst., vol. 92, pp. 167-180, Nov. 2017.
[10] F. Sayadi, S. Esmaeili, and F. Keynia, "Feeder reconfiguration and capacitor allocation in the presence of non-linear loads using new P-PSO algorithm," IET Gener. Transm. Distrib., vol. 10, no. 10, pp. 2316-2326, Jul. 2016.
[11] J. Cabral, I. Perez, and S. Manoel, "Capacitor and passive filter placement in distribution systems by nondominated sorting genetic algorithm-II," Electr. Power Syst. Res., vol. 143, pp. 482-489, Feb. 2017.
[12] S. Segura, L. C. da Silva, R. Romero, and D. Salles, "Strategic capacitor placement in distribution systems by minimisation of harmonics amplification because of resonance," IET Gener. Transm. Distrib., vol. 6, no. 7, pp. 646-656, Jul. 2012.
[13] Z. Huang, W. Xu, and V. R. Dinavahi, "A practical harmonic resonance guideline for shunt capacitor applications," IEEE Trans. Power Deliv., vol. 18, no. 4, pp. 1382-1387, Oct. 2003.
[14] M. A. Masoum, M. Ladjevardi, E. F. Fuchs, and W. M. Grady, "Optimal placement and sizing of fixed and switched capacitor banks under nonsinusoidal operating conditions," IEEE Power Eng. Soc. Summer Meet., vol. 2, pp. 807-813, Jul. 2002.
[15] M. A. Masoum, M. Ladjevardi, E. F. Fuchs, and W. M. Grady, "Application of local variations and maximum sensitivities selection for optimal placement of shunt capacitor banks under nonsinusoidal operating conditions," Int. J. Electr. Power Energy Syst., vol. 26, no. 10, pp. 761-769, Dec. 2004.
[16] M. A. Masoum, A. Jafarian, M. Ladjevardi, E. F. Fuchs, and W. M. Grady, "Fuzzy approach for optimal placement and sizing of capacitor banks in the presence of harmonics," IEEE Trans. Power Deliv., vol. 19, no. 2, pp. 822-829, Apr. 2004.
[17] M. A. Masoum, M. Ladjevardi, A. Jafarian, and E. F. Fuchs, "Optimal placement, replacement and sizing of capacitor banks in distorted distribution networks by genetic algorithms," IEEE Trans. Power Deliv., vol. 19, no. 4, pp. 1794-1801, Oct. 2004.
[18] M. Ladjevardi and M. A. Masoum, "Genetically optimized fuzzy placement and sizing of capacitor banks in distorted distribution networks," IEEE Trans. Power Deliv., vol. 23, no. 1, pp. 449-456, Dec. 2008.
[19] J. J. Liang and P. N. Suganthan, "Dynamic multi-swarm particle swarm optimizer," in Proc. IEEE Swarm Intelligence Symp., SIS'05, 6 pp., Aug. 2005.
[20] E. Fuchs and M. A. S. Masoum, Power Quality in Power Systems and Electrical Machines, Academic Press, 2011.
[21] IEEE Power Energy Society, IEEE Guide for Application of Shunt Power Capacitors, 2010.
[22] IEEE Power Energy Society, IEEE 519: IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, 2014.
[23] N. J. Cheung, X. M. Ding, and H. B. Shen, "OptiFel: a convergent heterogeneous particle swarm optimization algorithm for takagi-sugeno fuzzy modeling," IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 919-933, Aug. 2014.
[24] W. M. Grady, M. J. Samoty, and A. H. Noyola, "The application of network objective functions for actively minimizing the impact of voltage harmonics in power systems," IEEE Trans. Power Deliv., vol. 7, no. 3, pp. 1379-1386, Jul. 1992.
[25] H. Mohkami, R. Hooshmand, and A. Khodabakhshian, "Fuzzy optimal placement of capacitors in the presence of nonlinear loads in unbalanced distribution networks using BF-PSO algorithm," Appl. Soft Comput., vol. 11, no. 4, pp. 3634-3642, Jun. 2011.