مدیریت احتمالی تراکم با در نظر گرفتن عدم قطعیتهای سيستم قدرت و استفاده از الگوریتم برنامهریزی مبتنی بر شانس
محورهای موضوعی : مهندسی برق و کامپیوترمهرداد حجت 1 * , محمدحسین جاویدی 2
1 - دانشگاه فردوسی مشهد
2 - دانشگاه فردوسی مشهد
چکیده مقاله :
تراكم در خطوط انتقال يكي از موانع اصلي براي شكلگيري رقابت سالم در بازار برق ميباشد و بنابراين تحقيقات متعددي بر روي روشهاي مديريت تراكم در بازار برق انجام شده است. از سوي ديگر، رفتار يك سيستم قدرت داراي ماهيت تصادفي است و بههمين دليل در بسياري از مباحث مطالعاتی مرتبط با بهرهبرداری و برنامهریزی، سیستم بهصورت غير قطعي مدلسازي و بررسي ميگردد. عدم قطعيتهاي سيستم قدرت را بهطور كلي ميتوان در سه بخش مستقل بار، توليد و شبكه انتقال بررسي نمود. در اين مقاله، هدف ارائه روشي جديد براي تحليل تصادفي تراكم به كمك مدلسازي عدم قطعيتهاي ذاتي سيستم قدرت است. جهت تحليل مسئله مديريت تراكم بهصورت احتمالي بهجاي استفاده از روشهاي معمول، از برنامهريزي مبتني بر شانس كه روشي براي مدلسازي مسایل بهينهسازي تصادفي است، استفاده ميگردد. مدل پیشنهادی مدیریت احتمالی تراکم توسط يك روش عددي با تكيه بر الگوريتم ژنتيك كد حقيقي و تكنيك مونت كارلو تحليل ميشود. براي مطالعه كارايي روش پيشنهادي، مديريت تراكم بهصورت احتمالي بر روي شبكه 9باسه اصلاحشده IEEE پيادهسازي ميشود. در اين شبكه منتخب، روش پيشنهادي براي تحليل تصادفي تراكم با روش ميانگين مقايسه شده و عملكرد روش ارائهشده در اين مقاله ارزيابي ميگردد. مطالعه نتایج، نشاندهنده انعطافپذیری روش پیشنهادی در مدیریت تراکم شبکه انتقال است.
In this paper, a new method for probabilistic congestion management considering power system uncertainties is proposed. Chance constrained programming (CCP) is used to formulate the probabilistic congestion management as an efficient approach for stochastic optimization problems. The CCP based probabilistic congestion management is solved utilizing a numerical approach by applying the Monte-Carlo technique into the real-coded genetic algorithm. The effectiveness of the proposed method is evaluated applying the method to the modified IEEE 9-bus test system. The results of the proposed approach are compared with those of the expected method to have a comprehensive study. The simulation results reflect the flexibility of the proposed approach in transmission congestion management.
[1] A. Kumara, S. C. Srivastava, and S. N. Singh, "Congestion management in competitive power market: a bibliographical survey," Electric Power Systems Research, vol. 76, no. 1-3, pp. 153-164, Sep. 2005.
[2] E. Bompard, P. Correia, G. Gross, and M. Amelin, "Congestion management schemes: a comparative analysis under a unified framework," IEEE Trans. on Power Systems, vol. 18, no. 1, pp. 346-352, Feb. 2003.
[3] M. I. Alomoush and S. M. Shahidehpour, "Contingency - constrained congestion management with a minimum number of adjustments in preferred schedules," Int. J. of Electrical Power & Energy Systems, vol. 22, no. 4, pp. 277-290, May 2000.
[4] H. Glavitsch and F. Alvarado, "Management of multiple congested condition in unbundled operation of a power system," IEEE Trans. on Power Systems, vol. 13, no. 3, pp. 1013-1019, Aug. 1998.
[5] K. R. S. Reddy, N. P. Padhy, and R. N. Patel, "Congestion management in deregulated power system using FACTS devices," in Proc. IEEE Power India Conf., 8 pp., 2006.
[6] A. Kazemi and R. Sharifi, "Optimal location of thyristor controlled phase shifter in restructured power systems by congestion management," in Proc. IEEE Int. Conf. on Industrial Technology, pp. 294-298, 15-17 Dec. 2006.
[7] A. Kumar, S. C. Srivastava, and S. N. Singh, "A zonal congestion management approach using real and reactive power rescheduling," IEEE Trans. on Power Systems, vol. 19, no. 1, pp. 554-562, Feb. 2004.
[8] A. Kumar, S. C. Srivastava, and S. N. Singh, "A zonal congestion management approach using ac transmission congestion distribution factors," Electric Power Systems Research, vol. 72, no. 1, pp. 85-93, Nov. 2004.
[9] W. Y. Ng, "Generalized generation distribution factors for power system security evaluations," IEEE Trans. on Power Apparatus and Systems, vol. 100, no. 3, pp. 1001-1005, Mar. 1981.
[10] M. Esmaili, H. A. Shayanfar, and N. Amjady, "Multi-objective congestion management incorporating voltage and transient stabilities," Electrical Power and Energy Systems, vol. 34, no. 9, pp. 1401-1412, Sep. 2009.
[11] Y. -Y. Hong, C. -N. Chang-Chien, K. -L. Wu, and M. -S. Yang, "Determination of congestion zones in deregulated electricity markets using fuzzy clustering", Proc. 14th Power System Computation Conf., Jun. 2002.
[12] W. Yang, Q. Wan, and Y. Tang, "Congestion management based on dynamic zoning and coordinated auctioning method," in Proc. 3rd Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies, vol. ???, pp. 527-532, 6-9 Apr. 2008.
[13] P. N. Biskas and A. G. Bakirtzis, "Decentralized congestion management of interconnected power systems," IEE Proc. - Gener. Trans. Disturb, vol. 149, no. 4, pp. 432-438, Jul. 2002.
[14] L. A. Tuan, K. Bhattacharya, and J. Daalder, "Transmission congestion management in bilateral markets: an interruptible load auction solution," Electric Power Systems Research, vol. 74, no. 3, pp. 379-389, 2005.
[15] B. K. Talukdar, A. K. Sinha, S. Mukhopadhyay, and A. Bose, "A computationally simple method for cost - efficient generation rescheduling and load shedding for congestion management," Int. J. Electrical Power and Energy Systems, vol. 27, no. 5, pp. 379-388, 2005.
[16] J. Liu, M. M. A. Salama, and R. Mansour, "Identify the impact of distributed resources on congestion management," IEEE Trans. on Power Delivery, vol. 20, no. 3, pp. 1998-2005, Jul. 2005.
[17] M. Afkousi-Paqaleh, A. R. Noory, A. Abbaspour, and M. Rashidinejad, "Transmission congestion management using distributed generation considering load uncertainty," in Proc. Power and Energy Engineering Conf. (Asia-Pacific), 4 pp., 28-31 Mar. 2010.
[18] J. M. Morales and J. Perez - Ruiz, "Point estimate schemes to solve the probabilistic power flow," IEEE Trans. on Power Systems, vol. 22, no. 4, pp. 1594-1601, Nov. 2007.
[19] M. Esmaili, H. A. Shayanfar, and N. Amjady, "Stochastic congestion management considering power system uncertainties," Iranian J. of Electrical & Electronic Engineering, vol. 6, no. 1, pp. 36-47, Mar. 2010.
[20] M. Esmaili, N. Amjady, and H. A. Shayanfar, "Stochastic congestion management in power markets using efficient scenario approaches," Energy Conversion and Management, vol. 51, no. 11, pp. 2285-2293, Nov. 2010.
[21] A. Charnes and W. W. Cooper, "Chance constrained programming," Manage Sci., vol. 6, no. 1, pp. 73-79, Oct. 1959.
[22] H. Zhang and P. Li, "Chance constrained programming for optimal power flow under uncertainty," IEEE Trans. on Power Systems, vol. 26, no. 4, pp. 2417-2424, Nov. 2011.
[23] H. Wan, J. D. McCalley, and V. Vittal, "Risk based voltage security assessment," IEEE Trans. on Power Systems, vol. 15, no. 4, pp. 1247-1254, Nov. 2000.
[24] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric Power Systems, New York: IEEE, Wiley-Inter Science, 2002.
[25] G. Verbic, A. Schellenberg, W. Rosehart, and A. C. Canizares, "Probabilistic optimal power flow applications to electricity markets," in Proc. Int. Conf. on Probabilistic Methods Applied to Power Systems, 6 pp., 2006.
[26] A. Tamtum, A. Schellenberg, and W. D. Rosehart, "Enhancements to the cumulant method for probabilistic optimal power flow studies," IEEE Trans. on Power Systems, vol. 24, no. 4, pp. 1739-1746, Nov. 2009.
[27] G. K. Stefopoulos, A. P. Meliopoulos, and G. J. Cokkinides, "Probabilistic power flow with non - conforming electric loads," Int. J. Electrical Power and Energy Systems, vol. 27, no. 5, pp. 627-634, 2005.
[28] A. J. Wood and B. F. Wollenberg, Power Generation Operation and Control, 2nd Ed, Wiley, New York, pp. 440-444, 1996.
[29] N. Yang and F. Wen, "A chance constrained programming approach to transmission system expansion planning," Electric Power Systems Research, vol. 75, no. 2-3, pp. 171-177, Aug .2005.
[30] I. G. Damousis, A. G. Bakirtzis, and P. S. Dokopoulos, "Network - constrained economic dispatch using real - coded genetic algorithm," IEEE Trans. on Power Systems, vol. 18, no. 1, pp. 198-205, Feb. 2003.