روش نوین مدلسازی و پاسخیابی بهینه مطلق برنامهریزی توسعه شبکه انتقال با لحاظ شرایط پیشامد
محورهای موضوعی : مهندسی برق و کامپیوترابوالفضل ناطقی 1 , حسین سیفی 2 * , محمدکاظم شیخالاسلامی 3 , محمدصادق سپاسیان 4
1 - دانشگاه تربیت مدرس
2 - دانشگاه تربیت مدرس
3 - دانشگاه تربیت مدرس
4 - دانشگاه شهید بهشتی
کلید واژه: روشهای مدلسازی MILP MINLP و NLP وقوع پیشامد روش حل BARON,
چکیده مقاله :
برنامهریزی توسعه شبکه انتقال، یکی از مهمترین بخشهای برنامهریزی توسعه شبکه برق میباشد. تا کنون روشهای مختلفی جهت انجام این برنامهریزی مورد استفاده قرار گرفتهاند تا بتوانند بهترین حالت توسعه شبکه انتقال را ارائه دهند. در این مقاله، روشهای برنامهریزی خطی ترکیبی عدد- صحیح (MILP) و برنامهریزی غیر خطی ترکیبی عدد- صحیح (MINLP) جهت انجام مطالعات برنامهریزی توسعه شبکه انتقال مورد استفاده قرار گرفته و روش جدید برنامهریزی غیر خطی (NLP) با حذف عدد صحیح بهعنوان روشی جدید معرفی گشته است. همچنین در انجام مسأله برنامهریزی، حالات مختلف وقوع پیشامد نیز در حل مسأله وارد شده است كه در مطالعات گذشته، اين مهم صورت نگرفته بود. برای حل مسأله، ترکیبهای مختلفی از توابع هدف شامل هزینه توسعه، هزینه بهرهبرداری و هزینه تلفات مورد توجه قرار گرفته و نتایج حالات مختلف با یکدیگر مقایسه شدهاند. برای بررسی امکان دسترسی به نقطه بهینه مطلق در مسأله حاضر، روش حل BARON بهعنوان روش حل مناسب مورد استفاده قرار گرفته است. روشهای ارائهشده بر روی شبکه نمونه 6شینه گارور و شبکه 118شینه IEEE اعمال شده است. نتایج بهدست آمده، نشاندهنده امکان دسترسی به نقطه بهینه مطلق با دقت و سرعت بالا با استفاده از روشهای مدلسازی MINLP و NLP است. همچنین مشاهده میشود که با در نظرگیری حالات وقوع پیشامد، نتایج توسعه شبکه، دقیقتر و صحیحتر خواهد بود.
ts cause different neural responses containing a regular firing, or a long latency before firing with or without a leading spike. In this paper, the firing behavior of DCN pyramidal cells is simulated first Transmission Expansion Planning (TEP) is an important issue of power system planning studies. In literature, different methods are investigated to achieve good solutions for TEP. This paper uses Mixed Integer Linear Programming (MILP) and Mixed Integer Nonlinear Programming (MINLP) methods to study TEP. It also presents a new NLP model in which the integer variables are omitted. Moreover, the models are properly modified so that contingency conditions are also observed. Different combinations of cost functions such as the expansion cost, the operation cost and the cost of the losses are considered and compared. To reach a global optimum solution, BARON solver is applied. The proposed algorithm is applied on Garver 6-bus and IEEE-118 bus test systems. It is shown that modeling the problem by MINLP and NLP methods, in combination with a proper solver, can result in a quick optimum solution.
[1] L. L. Garver, "Transmission network estimation using linear programming," IEEE Trans. on Power App. Syst., vol. 89, no. 7, pp. 1688-1697, Sep./Oct. 1970
[2] S. D. La Torre, A. J. Conejo, and J. Contreras, "Transmission expansion planning in electricity markets," IEEE Trans. on Power Systems, vol. 23, no. 1, pp. 238-248, Feb. 2008.
[3] N. Alguacil, A. L. Motto, and A. J. Conejo, "Transmission expansion planning: a mixed - integer LP approach," IEEE Trans. on Power Systems, vol. 18, no. 3, pp. 1070-1076, Aug. 2003.
[4] O. B. Tor, A. N. Guven, and M. Shahidehpour, "Congestion-driven transmission planning considering the impact of generator expansion," IEEE Trans. on Power Systems, vol. 23, no. 2, pp. 781-789, May 2008.
[5] A. Monticelli and R. Romero, "A hierarchical decomposition approach for transmission network expansion planning," IEEE Trans. on Power Systems, vol. 9, no. 1, pp. 373-380, Feb. 1994.
[6] I. G. Sanchez, R. Romero, J. R. S. Mantovani, and M. J. Rider, "Transmission - expansion planning using the DC model and nonlinear - programming technique," IEE Proc. Generation, Transmission, and Distribution, vol. 152, no. 6, pp. 763-769, Nov. 2005.
[7] M. J. Rider, A. V. Garcia, and R. Romero, "Transmission system expansion planning by a branch - and - bound algorithm," IET Generation, Transmission, and Distribution, vol. 2, no. 1, pp. 90-99, 2008.
[8] S. Haffner, A. Monticelli, A. Garcia, and R. Romero, "Specialised branch - and - bound algorithm for transmission network expansion planning," IEE Proc. Generation, Transmission, and Distribution, vol. 148, no. 5, pp. 482-488, Sep. 2001.
[9] M. V. F. Pereira and L. M. V. G. Pinto, "Application of sensitivity analysis of load supplying capability to interactive transmission expansion planning," IEEE Trans. on Power Apparatus and Systems, vol. 104, no. 2, pp. 381-389, Feb. 1985.
[10] H. Seifi, M. S. Sepasian, H. Haghighat, and A. Akbari, "Multi-voltage approach to long-term network expansion planning," IET, Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 826-835, Sep. 2007.
[11] R. K. Gajbhiye, D. Naik, S. Dambhare, and S. A. Soma, "An expert system approach for multi-year short-term transmission system expansion planning: an indian experience," IEEE Trans. on Power Systems, vol. 23, no. 1, pp. 226-237, Feb. 2008.
[12] R. Keypour, M. R. Haghifam, and H. Seifi, "Benefit - oriented long-term transmission expansion planning incompetitive electricity markets using genetic algorithm," J. of Iranian Association of Electrical and Electronic Engineers, vol. 4, no. 1, pp. 13-21, Sep. 2007.
[13] P. Murugan, S. Kannan, and S. Baskar, "Application of NSGA-II algorithm to single-objective transmission constrained generation expansion planning," IEEE Trans. on Power Systems, vol. 24, no. 4, Nov. 2009.
[14] A. S. D. Braga and J. T. Saraiva, "A multiyear dynamic approach for transmission expansion planning and long-term marginal costs computation," IEEE Trans. on Power Systems, vol. 20, no. 3, pp. 1631-1639, Aug. 2005.
[15] E. L. Da Silva, J. M. A. Ortiz, G. C. De Oliveira, and S. Binato, "Transmission network expansion planning under a tabu search approach," IEEE Trans. on Power Systems, vol. 16, no. 1, pp. 62-68, Feb. 2001.
[16] T. Sum-Im, G. A. Taylor, M. R. Irving, and Y. H. Song, "Differential evolution algorithm for static and multistage transmission expansion planning," IET Generation, Transmission, and Distribution, vol. 3, no. 4, pp. 365-384, Apr. 2009.
[17] J. Choi, A. El - Keib, and T. Tran, "A fuzzy branch and bound - based transmission system expansion planning for the highest satisfaction level of the decision maker," IEEE Trans. on Power Systems, vol. 20, no. 1, pp. 476-484, Feb. 2005.
[18] H. Seifi and M. S. Sepasian, Electric Power System Planning: Issues, Algorithms and Solutions, Springer-Verlag Berlin Heidelberg 2011.
[19] S. H. M. Hashimoto, R. Romero, and J. R. S. Mantovani, "Efficient linear programming algorithm for the transmission network expansion planning problem," IEE Proc. on Generation, Transmission, and Distribution, vol. 150, no. 5, pp. 536-542, 15 Sep. 2003.
[20] J. Choi, T. D. Mount, and R. J. Thomas, "Transmission expansion planning using contingency criteria," IEEE Trans. on Power Systems, vol. 22, no. 4, pp. 2249-2261, Nov. 2007.
[21] J. Choi, T. D. Mount, R. J. Thomas, and R. Billinton, "Probabilistic reliability criterion for planning transmission system expansions," IEE Proc. Generation, Transmission, and Distribution, vol. 153, no. 6, pp. 719-727, Nov. 2006.
[22] R. Villasana, L. L. Garver, and S. J. Salon, "Transmission network planning using linear programming," IEEE Trans. on Power Apparatus and Systems, vol. 104, no. 2, pp. 349-356, Feb. 1985.
[23] A. Neumaier, O. Shcherbina, and W. Huyer, "A comparison of complete global optimization solvers," Mathematical Programming B, vol., 103, no. 2, pp. 335-356, Jun. 2005.
[24] C. S. Pedamallu, L. Ozdamar, T. Csendes, and T. Vinko, "Efficient interval partitioning for constrained global optimization," J. of Global Optimization, vol. 42, no. 3, pp. 369-384, Nov. 2008.
[25] IEEE 118-Bus System Data, Electrical and Computer Engineering Department, Illinois Institute of Technology (IIT). Available: http://motor.ece.iit.edu/Data/JEAS_IEEE118.doc.