الگوريتمي مبتنی بر اتوماتاهای يادگير برای تنظيم پارامتر مراقبت در شبكه Fuzzy ARTMAP
محورهای موضوعی : مهندسی برق و کامپیوترمجید انجیدنی 1 , محمدرضا میبدی 2 *
1 - دانشگاه آزاد اسلامی واحد نیشابور
2 - دانشگاه صنعتی امیرکبیر
کلید واژه: شبكههاي عصبيپارامتر مراقبتاتوماتاهاي يادگيرFuzzy ARTFuzzy ARTMA,
چکیده مقاله :
در اين مقاله الگوريتمي مبتنی بر اتوماتاهای یادگیر برای تنظيم پارامتر مراقبت در شبكه Fuzzy ARTMAP پیشنهاد ميشود. الگوريتم پیشنهادی از طریق تنظیم پارامتر مراقبت در شبکه Fuzzy ARTMAP، شبكهاي کوچک با نرخ بالای تشخیص تولید میکند. ساختار شبکه تولید شده توسط این الگوریتم مستقل از مقدار اولیه برای پارامتر مراقبت میباشد. الگوریتم پیشنهادی بر روی مسائل، دايره در مربع، مارپيچهاي حلزوني و مسئله مربع در مربع آزمایش شده و نتایج مطلوبی بدست آمده است.
In this paper, a method based on learning automata for adaptation of the vigilance factor in Fuzzy ARTMAP network when used for classification problems is proposed. The performance of the proposed algorithm is independent of the initial value for vigilance factor. Fuzzy ARTMAP network in which the vigilance factor adapted using learning automata generates smaller structure with higher recognition rate. To study the performance of the proposed method it has been applied to several problems: circle in square, spirals and square in square problems. The results of experiments show the effectiveness of the proposed method.
[1] A. R. Webb, Statistical Pattern Recognition, John Wiley & Sons, 2nd Edition, 2002.
[2] G. A. Carpenter and S. Grossberg, "A massively parallel architecture for a self-organizing neural pattern recognition machine," Computer Vision, Graphics and Image Processing, vol. 37, no. 1, pp. 54-115, Jan. 1987.
[3] G. A. Carpenter, S. Grossberg, and D. B. Rosen, "ART 2-A: An adaptive resonance algorithm for rapid category learning and recognition," Neural Networks, vol. 4, no. 4, pp. 493-504, Jul. 1991.
[4] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks. Reading, MA: Addison-Wesley, 1989.
[5] J. R. Whitely, J. F. Davis, A. Mehrotra, and S. C. Ahalt, "Observations and problems applying ART2 for dynamic sensor pattern interpretation," IEEE Trans. Syst., Man, Cybern., vol. 26, no. 4, pp. 423-437, Jul. 1996.
[6] G. A. Carpenter, S. Grossberg, and D. B. Rosen, "Fuzzy ART: fast stable learning and categorization of analog patterns - by an adaptive resonance system," Neural Networks, vol. 4, no. 6, pp.759-771, Nov. 1991.
[7] G. A. Carpenter, S. Grossberg and J. H. Reynolds, "A Fuzzy ARTMAP nonparametric probability estimator for nonstationary pattern recognition problems," IEEE Trans. on Neural Networks, vol. 6, no. 6, Nov. 1995.
[8] G. A. Carpenter and S. Grossberg, "ART 2: Self-organization of stable category recognition codes for analog input patterns," Appl. Opt., vol. 26, no. 23, pp. 4919-4930, Dec. 1987.
[9] G. A. Carpenter, S. Grossberg, and J. H. Reynolds, "ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network," Neural Networks, vol. 4, no. 5, pp. 565-588, Sep. 1991.
[10] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Renolds, and D. B. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 698-713, Sep. 1992.
[11] J .J. Choi et al., "Fuzzy Parameter Adaptation in Neural Systems," in Proc. Int. Joint. Conf. Neural Networks, IJCNN'92, vol. 1, pp.232-238, 1992.
[12] F. Li and J. Zhan, "Fuzzy adapting vigilance parameter of ART 2 neural nets," in Proc. IEEE ICNN, vol. 3, pp. 1680-1685, Orlando, FL, US, Jun. 1994.
[13] M. R. Meybodi and H. Beigy, "A Note on learning automata based schemes for adaptation of BP parameters," J. of Neurocomputing, vol. 48, no. 4, pp. 957-974, Oct. 2002.
[14] H. Beigy and M. R. Meybodi "Backpropagation algorithm adaptation parameters using learning automata," Int. J. of Neural System, vol. 11, no. 3, pp. 219-228, Jun. 2001.
[15] M. R. Meybodi, and H. Beigy, "New learning automata based algorithms for adaptation of backpropagation algorithm parameters," Int. J. of Neural System, vol. 12, no. 1, pp. 45-67, Feb. 2002.
[16] P. Adibi, M. R. Meybodi, and R. Safabakhsh, "Unsupervised learning of synaptic delays based on learning automata in an RBF-like network of spiking neurons for data clustering," J. of Neurocomputing, vol. 64, pp. 335-357, Mar. 2005.
[17] B. Mashoufi, M. B. Mehaj, A. Motamedi, and M. R. Meybodi, "Introducing an adaptive VLR algorithm using learning automata for multilayer perceptron," IEICE Trans. on Information and Systems, vol. E86-D, no. 3, pp. 495-609, Mar. 2003.
[18] K. S. Narendra and M. A. L. Thatachar, "Learning automata: a survey," IEEE Trans. on Systems, Man, and Cybernetic, vol. 4, no. 8, pp. 323-334, Jul. 1974.
[19] M. Busque and M. Parizeau, A Comparison of Fuzzy ARTMAP and Multilayer Perceptron for Handwritten Digit Recognition, Laval Universite, Oct. 1997.