ارزیابی احتمالاتی عملکرد حفاظتی برقگیرهای چندمحفظهای در کاهش خاموشیهای ناشی از صاعقه در خطوط توزیع هوایی
محورهای موضوعی : مهندسی برق و کامپیوتر
1 - دانشگاه صنعتی همدان،گروه مهندسی برق
کلید واژه: ارزیابی عملکرد برقگیر, اضافه ولتاژ القایی صاعقه, برقگیرهای چندمحفظهای, حفاظت عایقی خطوط توزیع, عدم قطعیت, هماهنگی عایقی,
چکیده مقاله :
در این مقاله، یک فرایند محاسباتی احتمالاتی دقیق برای تعیین تعداد خاموشی ناشی از برخورد صاعقه و نیز ارزیابی میزان اثربخشی نصب برقگیرهای چندمحفظهای (MCA) به عنوان گزینه جایگزین برای برقگیرهای مقاومت- متغیر اکسید فلزی (MOV) مرسوم برای تأمین حفاظت فیدرهای توزیع در برابر صاعقه و جلوگیری از بروز خاموشی پیادهسازی شده است. محاسبه اضافه ولتاژ القایی ناشی از برخورد غیر مستقیم بر اساس مدل آگراوال و لحاظ زمین تلفاتی انجام گردیده است. برای در نظر گرفتن عدم قطعیت پارامترهای صاعقه شامل دامنه جریان، زمان پیشانی موج و فاصله برخورد صاعقه از خط توزیع از روش مونتکارلو به همراه روش کاهش سناریوی بازگشتی استفاده شده و عملکرد MCA در حفاظت خط توزیع به همراه مدلی مناسب در نرمافزار ATP-EMTP شبیهسازی گردیده است. همچنین به منظور پیادهسازی سناریوهای متعدد ایجادشده و تحلیل نتایج، ارتباط نرمافزاری بین برنامه MATLAB و نرمافزار فوق ایجاد شده است. شرایط مختلفی مانند مقادیر استقامت عایقی خط، هدایت ویژه زمین و ضریب حفاظتی عوارض خط توزیع نیز در محاسبات لحاظ شده است. نتایج به دست آمده به نحوی ارائه گردیده تا علاوه بر تخمین تعداد تخلیههای ناشی از صاعقه، ارزیابی اثربخشی نصب MCA با توجه به شرایط متنوع هر فیدر با دقت بالا قابل تعیین باشد.
A sophisticated and accurate probabilistic computational procedure for the calculation of lightning failures and evaluation of MCA performance for reduction of failures is implemented in this paper. Calculation of induced overvoltage caused by indirect lightning is implemented based on the Agarwal method with consideration of lossy ground. The Monte Carlo method with backward scenario reduction is implemented to take into account the uncertainty of lightning flash parameters including peak current and front time with the distance of the striking point from the distribution line with applying a proper model for simulation of MCA in ATP-EMTP software. A link is developed between MATLAB and ATP-EMTP software to simulate the numerous generated scenarios and analyze the output results. Different conditions including the insulation strength of the line, the earth conductivity, and the shielding factor of the adjacent objects to the line are also taken into account in calculations. The results are presented in a proper way to make them useful for the determination of lightning-related failure rates and also accurate evaluation of the effectiveness of MCA installation in different conditions of distribution feeders.
[1] IEEE Std. 1410, IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, IEEE Working Group on the Lightning Performance of Distribution Lines, 2010.
[2] IEEE Std C62.22, IEEE Guide for the Application of Metal-Oxide Surge Arresters for Alternating Current Systems, 2009.
[3] R. J. Cabral, R. C. Leborgne, A. S. Bretas, G. D. Ferreira, and J. A. Morales, "Lightning protection system design for distribution networks based on system average interruption frequency minimization," Electric Power Systems Research, vol. 160, pp. 1-12, Jul. 2018.
[4] X. S. Zhang, et al., "Optimal location of surge arresters on an overhead distribution network by using binary particle swarm optimization," IN Proc. Chinese Automation Congress, CAC’18, pp. 1841-1846, Xi'an, China, 30 Nov.-2 Dec. 2018.
[5] B. M. Eduard, A. Sumper, R. Villafafila-Robles, and J. Rull-Duran, "Optimization of surge arrester locations in overhead distribution networks," IEEE Trans. on Power Delivery, vol. 30, no. 2, pp. 674-683, Apr. 2015.
[6] R. G. Vianna Soares, et al., "Optimized surge arrester allocation based on genetic algorithm and ATP simulation in electric distribution systems," Energies, vol. 12, no. 21, 15 pp., Oct. 2019.
[7] L. Zhang, Z. Zhang, S. Fang, and A. A. Bretas, "An optimization model for distribution networks lightning protection system design: a reliability indexes and cost-based solution," in Proc. IEEE Power & Energy Society General Meeting, PESGM’20, 5 pp., Montreal, Canada, 2-6 Aug. 2020.
[8] L. Simin, L. Luan, Y. Cui, S. Xu, Q. Guo, and T. Liu, "Simulation research on lightning protection effect of distribution line lightning protection measures," J. of Physics: Conf. Series, vol. 1802, no. 4, 9 pp., Aug. 2021.
[9] Line Lightning Protection Devices for Medium-Voltage Networks, Streamer® International AG, 2020.
[10] P. Erlangga, S. Hidayat, and R. Zoro, "Lightning protection system on overhead distribution line using multi chamber arrester," in Proc. 2nd IEEE Conf. on Power Engineering and Renewable Energy, ICPERE’14, pp. 70-74, Bali, Indonesia, 9-11 Dec. 2014.
[11] G. V. Podpork, V. E. Pilshikov, E, S. Kalakutsky, and A. D. Sivaev, "Overhead lines lightning protection by multi-chamber arresters and insulator-arresters," IEEE Trans. on Power Delivery, vol. 26, no. 1, pp. 214-221, Oct. 2010.
[12] M. Zinck and B. Frain, "Multi-chamber arrester field test experience on medium voltage overhead line in Asia," in Proc. Int Conf. on Power Systems Transients, IPST’15, 7 pp., Cavtat, Croatia, 15-18 Jun. 2015.
[13] Z. Reynaldo and T. Leo, "Multi-chamber arrester study at tropical area for 20 kV lines lightning protection system," in Proc. Int. Conf. on Electrical Engineering and Informatics, ICEEI’15, pp. 197-201, Denpasar, Indonesia, 10-11 Aug. 2015.
[14] م. شريعتي و همکاران، "تجربيات ميداني به كارگيري برقگيرهاي چندمحفظهاي و بهرهبرداري بهينه از شبکههاي توزيع در مناطق تحت پوشش استان هرمزگان،" مجموعه مقالات سيامين کنفرانس بينالمللي برق، 9 صص.، تهران، ایران، 13-11 آبان 1394.
[15] ا. احمدي جنيدي و همکاران، "حفاظت خطوط هوايي توزيع فشارمتوسط در برابر صاعقه، بدون نياز به سيستم زمين با استفاده از برقگيرهاي نوين چندمحفظهاي در مناطق منتخب تحت پوشش شركت توزيع نواحي تهران،" مجموعه مقالات بيست و هشتمين کنفرانس بينالمللي برق، تهران، ایران، 9 صص.، 15-13 آبان 1392.
[16] ر. نقیزاده، ع. ا. اشرفی و س. چترآذر، "مقايسه عملکرد فناوري برقگيرهاي چندمحفظهاي با برقگيرهاي اکسيد فلزي در حفاظت خطوط شبکه توزيع در برابر صاعقه همراه با ارائه مدل جديد،" مجموعه مقالات چهارمین کنفرانس ملی فناوریهای نوین در مهندسی برق و کامپیوتر، 14 صص.، اصفهان، ایران، 30 شهریور 1400.
[17] J. A. Martinez-Velasco, Power System Transients: Parameter Determination, CRC Press, 2014.
[18] M. Rioual, Short and Long Air Gaps (Insulator Strings and Spark Gaps) Modelling for Lightning Studies with EMTP Program (EPRI-DCG version 2.0), Research Project, Final Report, Mar. 1988.
[19] A. R. Hileman, Insulation Coordination for Power Systems, Marcel Dekker Inc., New York, 1999.
[20] D. O. Belko and G. V. Podporkin, "Analysis of current distribution among long-flashover arresters for 10 kV overhead line protection against direct lightning strikes," in Proc. 33rd Inte Conf. on Lightning Protection, ICLP’16, 6 pp., Estoril, Portugal 25-30 Sept. 2016.
[21] H. K. Hoidalen, "Calculation of lightning-induced overvoltages using MODELS," in Proc. Int. Conf. Power Syst. Transients, IPST’03, 6 pp. 359-364, New Orleans, LA, USA, 28 Sept.-2 Oct. 2003.
[22] H. K. Høidalen, Lightning Induced Voltages in Low-Voltage Systems, Ph.D. Thesis, University of Trondheim, 1997.
[23] R. B. Anderson and A. J. Eriksson, "Lightning parameters for engineering application," Electra, vol. 69pp. 65-102, Jan. 1980.
[24] Cigré Working Group 01 of SC 33, Guide to Procedures for Estimating the Lightning Performance of Transmission Lines Cigré, Ref. no. 63, 1991.
[25] R. Y. Rubinstein, Simulation and the Monte Carlo Method, New York: Wiley, 1981.
[26] H. Holger and W. Romisch, "Scenario reduction algorithms in stochastic programming," Computational Optimization and Applications, vol. 24, no. 2, pp. 187-206, Feb. 2003.
[27] -، مشخصات فني عمومي و اجرايي خطوط توزيع برق هوايي و کابلي فشارمتوسط و فشارضعيف، نشريه 374، معاونت امور فني، تدوين معيارها و کاهش خطرپذيري ناشي از زلزله سازمان مديريت و برنامهريزي کشور و دفتر بازرسي، کنترل کيفي و تدوين استانداردهاي سازمان توانير، 1386.
[28] P. Chowdhuri, "Estimation of flashover rates of overhead power distribution lines by lightning strokes to nearby ground," IEEE Trans. on Power Delivery, vol. 4, no. 3, pp. 1982-1989, Jul. 1989.