مدل توصیه مکانهای مورد علاقه با توجه به الگوی رفتاری افراد بر اساس لیست دوستان بر پایه یادگیری عمیق
محورهای موضوعی : مهندسی برق و کامپیوتر
1 - دانشگاه آزاد اسلامی واحد مشهد
2 - دانشگاه آزاد اسلامی واحد مشهد
کلید واژه: خوشهبندی انتقال میانگین, شبکه عصبی کانولوشن, شبکههای اجتماعی, نقاط مورد علاقه (POI),
چکیده مقاله :
رشد سریع شبکههای اجتماعی مبتنی بر مکان، فرصتی عالی برای ارائه خدمات توصیه مکانهای مورد علاقه به صورت هدفمند میباشد. یک وظیفه مهم برای توصیه دقیق نقاط جذاب و مورد علاقه کاربران در شبکههای اجتماعی مبتنی بر مکان، با توجه به چالشهای متون غنی و پراکندگی دادهها، بررسی ویژگیهای معنادار کاربران و نقاط مورد علاقه است. در این مقاله، یک روش جدید برای توصیه ترتیب دقیق بهترین نقاط مورد علاقه کاربران ارائه شده که ترکیبی از رویکردهای شبکه عصبی کانولوشن، خوشهبندی و دوستی میباشد. برای یافتن شباهت در رفتار دوستان صمیمی، از روش خوشهبندی انتقال میانگین استفاده میکنیم و فقط تأثیر الگوی رفتاری شبیهترین دوست را به نسبت همه دوستان کاربر در نظر میگیریم. چارچوب جدید شبکه عصبی کانولوشن پیشنهادی با ۱۰ لایه میتواند طول و عرض جغرافیایی و شناسه مکانهای مناسب بعدی را پیشبینی کرده و سپس بر اساس کوتاهترین فاصله از الگوی رفتاری دوست مشابه، مکانهای پیشنهادی را انتخاب کند. این رویکرد ترکیبی، در دو مجموعه داده شبکههای اجتماعی مبتنی بر مکان ارزیابی شده و نتایج تجربی نشان میدهد که استراتژی ما از روشهای پیشرفته توصیه نقاط مورد علاقه دقیقتر عمل میکند.
The rapid growth of Location-based Social Networks (LBSNs) is a great opportunity to provide personalized recommendation services. An important task to recommend an accurate Point-of-Interests (POIs) to users, given the challenges of rich contexts and data sparsity, is to investigate numerous significant traits of users and POIs. In this work, a novel method is presented for POI recommendation to develop the accurate sequence of top-k POIs to users, which is a combination of convolutional neural network, clustering and friendship. To discover the likeness, we use the mean-shift clustering method and only consider the influence of the most similarities in pattern’s friendship, which has the greatest psychological and behavioral impact rather than all user’s friendship. The new framework of a convolutional neural network with 10 layers can predict the next suitable venues and then select the accurate places based on the shortest distance from the similar friend behavior pattern. This approach is appraised on two LBSN datasets, and the experimental results represent that our strategy has significant improvements over the state-of-the-art techniques for POI recommendation.
[1] T. Qian, B. Liu, Q. V. H. Nguyen, and H. Yin, "Spatiotemporal representation learning for translation-based POI recommendation," ACM Trans. Inf. Syst., vol. 37, no. 2, pp. 1-24, Jan. 2019.
[2] X. Li, D. Han, J. He, L. Liao, and M. Wang, "Next and next new POI recommendation via latent behavior pattern inference," ACM Trans. Inf. Syst., vol. 37, no. 4, pp. 1-28, Sept. 2019.
[3] W. Liu, H. Lai, J. Wang, G. Ke, W. Yang, and J. Yin, "Mix geographical information into local collaborative ranking for POI recommendation," World Wide Web, vol. 23, no. 1, pp. 131-152, Jan. 2020.
[4] Y. Wu, G. Zhao, K. Li, and X. Qian, "Long-and short-term preference learning for next POI recommendation," in Int. Conf. Inf. Knowl. Manag. Proc., Association for Computing Machinery, New York, NY, USA, pp. 2301-2304, Beijing, China, 3-7 Nov. 2019.
[5] R. Ding and Z. Chen, "RecNet: a deep neural network for personalized POI recommendation in location-based social networks," Int. J. Geogr. Inf. Sci., vol. 32, no. 8, pp. 1631-1648, Aug. 2018.
[6] T. N. Doan and E. P. Lim, "Modeling location-based social network data with area attraction and neighborhood competition," Data Min. Knowl. Discov., vol. 33, no. 1, pp. 58-95, Jan. 2019.
[7] D. Lian, K. Zheng, Y. Ge, L. Cao, E. Chen, and X. Xie, "GeoMF++: scalable location recommendation via joint geographical modeling and matrix factorization," ACM Trans. Inf. Syst., vol. 36, no. 3, pp. 1-29, Mar. 2018.
[8] M. Ye, P. Yin, W. C. Lee, and D. L. Lee, "Exploiting geographical influence for collaborative point-of-interest recommendation," in SIGIR'11-Proc. 34th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., Association for Computing Machinery, pp. 325-334, Beijing, China, 24-28 Jul. 2011.
[9] Z. Zhang, C. Li, Z. Wu, A. Sun, D. Ye, and X. Luo, "NEXT: a neural network framework for next POI recommendation," Front. Comput. Sci., vol. 14, no. 2, pp. 314-333, Apr. 2020.
Y. Gao, Z. Duan, W. Shi, J. Feng, and Y. Y. Chiang, "Personalized recommendation method of POI based on deep neural network," in Proc. Int. Conf. on Behavioral, Economic and Socio-Cultural Computing, 6 pp., Beijing, China, 28-30 Oct. 2019.
[10] M. A. Sit, C. Koylu, and I. Demir, "Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: a case study of Hurricane Irma," Int. J. Digit. Earth, vol. 12, no. 11, pp. 1205-1229, Jan. 2019.
[11] J. Zhang, Y. Xie, Q. Wu, and Y. Xia, "Medical image classification using synergic deep learning," Med. Image Anal., vol. 54, no. 1, pp. 10-19, May 2019.
[12] P. Y. Hao, W. H. Cheang, and J. H. Chiang, "Real-time event embedding for POI recommendation," Neurocomputing, vol. 349, pp. 1-11, 15 Jul. 2019.
[13] J. Yuan, X. Hou, Y. Xiao, D. Cao, W. Guan, and L. Nie, "Multi-criteria active deep learning for image classification," Knowledge-Based Syst., vol. 172, pp. 86-94, 15 May. 2019.
[14] R. Ranjbarzadeh and S. B. Saadi, "Automated liver and tumor segmentation based on concave and convex points using fuzzy c-means and mean shift clustering," Meas. J. Int. Meas. Confed, vol. 150, pp. 230-269, Jan. 2020.
[15] H. Yin, W. Wang, H. Wang, L. Chen, and X. Zhou, "Spatial-aware hierarchical collaborative deep learning for POI recommendation," IEEE Trans. Knowl. Data Eng., vol. 29, no. 8, pp. 2537-2551, Aug. 2017.
[16] F. He and P. Wei, "Research on comprehensive point of interest (POI) recommendation based on spark," Cluster Comput., vol. 22, no. 4, pp. 9049-9057, Jul. 2019.
[17] L. Huang, Y. Ma, S. Wang, and Y. Liu, "An attention-based spatiotemporal LSTM network for next POI recommendation," IEEE Trans. Serv. Comput, vol. 12, no. 1, pp. 1-1, May 2019.
[18] L. Sun, "POI recommendation method based on multi-source information fusion using deep learning in location-based social networks," J. Inf. Process. Syst., vol. 17, no. 2, pp. 352-368, Apr. 2021.
[19] H. Wang, P. Li, Y. Liu, and J. Shao, "Towards real-time demand-aware sequential POI recommendation," Inf. Sci. (Ny), vol. 547, pp. 482-497, 8 Feb. 2021.
[20] J. Zeng, H. Tang, Y. Zhao, M. Gao, and J. Wen, "PR-RCUC: a POI recommendation model using region-based collaborative filtering and user-based mobile context," Mob. Networks Appl., vol. 26, no. 3, pp. 1-11, Jan. 2021.
[21] A. Ellahyani and M. El Ansari, "Mean shift and log-polar transform for road sign detection," Multimed. Tools Appl., vol. 76, no. 22, pp. 24495-24513, Nov. 2017.
[22] Q. Mahmood, A. Chodorowski, and M. Persson, "Automated MRI brain tissue segmentation based on mean shift and fuzzy c-means using a priori tissue probability maps," IRBM, vol. 36, no. 3, pp. 185-196, Jun. 2015.
[23] D. Comaniciu and P. Meer, "Mean shift: a robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, Aug. 2002.
Z. Liu, J. Liu, X. Xiao, H. Yuan, X. Li, J. Chang, and C. Zheng, "Segmentation of white blood cells through nucleus mark watershed operations and mean shift clustering," Sensors, vol. 15, no. 9, pp. 22561-22586, Sept. 2015.
[24] J. Michel, D. Youssefi, and M. Grizonnet, "Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 952-964, Jul. 2015.
[25] K. Fukunaga and L. D. Hostetler, "The estimation of the gradient of a density function, with applications in pattern recognition," IEEE Trans. Inf. Theory, vol. 21, no. 1, pp. 32-40, Jan. 1975.
[26] N. Karimi, R. Ranjbarzadeh Kondrood, and T. Alizadeh, "An intelligent system for quality measurement of Golden Bleached raisins using two comparative machine learning algorithms," Meas. J. Int. Meas. Confed, vol. 107, pp. 68-76, 1 Sept. 2017.
[27] P. J. Sudharshan, C. Petitjean, F. Spanhol, L. E. Oliveira, L. Heutte, and P. Honeine, "Multiple instance learning for histopathological breast cancer image classification," Expert Syst. Appl., vol. 117, pp. 103-111, 1 Mar. 2019.
[28] F. Ozyurt, T. Tuncer, E. Avci, M. Koc, and I. Serhatlioglu, "A novel liver image classification method using perceptual hash-based convolutional neural network," Arab. J. Sci. Eng., vol. 44, no. 4, pp. 3173-3182, Apr. 2019.
[29] Y. Bengio, "Practical recommendations for gradient-based training of deep architectures," in Neural Networks: Tricks of the Trade, pp. 437-478, Springer, Berlin, Heidelberg, 2012.
[30] J. Dolz, C. Desrosiers, and I. Ben Ayed, "3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study," Neuroimage, vol. 170, pp. 456-470, 15 Apr. 2018.
[31] X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural networks," in Proc. of the 14th. Int. Conf. on Artificial Intelligence and Statistics, vol. 15, pp. 315-323, Fort Lauderdale, FL, USA, 11-13 Apr. 2011.
[32] W. Shang, K. Sohn, D. Almeida, and H. Lee, "Understanding and improving convolutional neural networks via concatenated rectified linear units," in Proc. 33rd. Int. Conf. on Machine Learning, vol 48, pp. 2217-2225, New York, NY, USA, 19-24 Jun. 2016.
[33] F. C. Morabito, M. Campolo, C. Ieracitano, and N. Mammone, "Deep learning approaches to electrophysiological multivariate time-series analysis," in Artificial Intelligence in the Age of Neural Networks and Brain Computing, ch. 11, pp. 219-243, Academic Press, 2018.
[34] W. Yin, H. Schutze, S. Schutze, B. Xiang, and B. Zhou, ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs, 2016. https://github.com/ (accessed January 4, 2021).
[35] F. Husain, B. Dellen, and C. Torras, "Scene understanding using deep learning," in Handbook of Neural Computation, ch. 20, pp. 373-382, Academic Press, 2017.
[36] M. Havaei, et al., "Brain tumor segmentation with deep neural networks," Med. Image Anal., vol. 35, pp. 18-31, Jan. 2017.
[37] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," vol. 15, no. 56, pp. 1929-1958, 2014.
[38] T. Y. Kim and S. B. Cho, "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, vol. 182, pp. 72-81, Sept. 2019.
[39] J. Chen, Z. Liu, H. Wang, A. Nunez, and Z. Han, "Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network," IEEE Trans. Instrum. Meas., vol. 67, pp. 257-269, Dec. 2017.
[40] Yelp Dataset. Availabe online: (n.d.). https://www.yelp.com/dataset.
[41] E. Cho, S. A. Myers, and J. Leskovec, "Friendship and mobility: user movement in location-based social networks," in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1082-1090, San Diego, CA, USA. 21-24 Aug. 2011.
[42] J. Zhou, B. Liu, Y. Chen, and F. Lin, "UFC: a unified POI recommendation framework," Arab. J. Sci. Eng., vol. 44, no. 11, pp. 9321-9332, Nov. 2019.
[43] I. Rahman, et al., "Ergothioneine inhibits oxidative stress- and TNF-α-induced NF-κ B activation and interleukin-8 release in alveolar epithelial cells," Biochem. Biophys. Res. Commun., vol. 302, no. 4, pp. 860-864, Mar. 2003.
[44] J. D. Zhang, C. Y. Chow, and Y. Li, "LORE: exploiting sequential influence for location recommendations," in Proc. 22nd. ACM Int. Symp. Adv. Geogr. Inf. Syst., Association for Computing Machinery, pp. 103-112, Dallas, TX, NY, USA, 3-7 Nov. 2014.
[45] H. Wang, M. Terrovitis, and N. Mamoulis, "Location recommendation in location-based social networks using user check-in data," in Proc. 21nd. ACM Int. Symp. Adv. Geogr. Inf. Syst., Association for Computing Machinery, pp. 364-373, Orlando, FL, USA, 5-8 Nov. 2013.