ارائه روشی هوشمند به منظور طراحی و بهینه سازی مقایسه گرهای دو دنباله
محورهای موضوعی : مهندسی برق و کامپیوترصادق محمدی اسفهرود 1 * , سیدحمید ظهیری 2
1 - دانشگاه بیرجند
2 - دانشگاه بیرجند
چکیده مقاله :
بهبود عملکرد مبدل آنالوگ به دیجیتال از جنبههای متفاوتی نظیر بهبود معماری کلی مبدل، بهبود معماری بلوکهای سازنده و یا بهبود طراحی بلوکها بررسی میشود. بلوک مقایسهگر به عنوان یک جزء اساسی در مبدلهای داده نقش بسیار مؤثری در عملکرد یک مبدل آنالوگ به دیجیتال دارد و از این رو توجه محققان را به خود جلب کرده است. چالش اصلی در این راستا، وجود اهداف طراحی متناقض و محدودیتها و الزامات مداری پیچیدهای است که طراحی بهینه این بلوک را بیش از پیش سخت و دشوار میکند. به همین سبب رویکرد جدید طراحان استفاده از روشهای ابتکاری است که به صورت گسترده در پژوهشهای جدید به چشم میخورد. در میان روشهای نوظهور ابتکاری، الگوریتم بهینهسازی سیستم صفحات شیبدار (IPO) روشی نسبتاً جدید و الهامگرفته از حرکت دینامیکی اجسام بر روی صفحات شیبدار بدون اصطکاک میباشد. اما علیرغم توانایی این روش در مرور و کاوش فضای جستجو، مدل استاندارد آن دارای روابطی پیچیده و توأم با پارامترهای ساختاری متعددی است که غالباً کاربر را در انتخاب مقادیر مناسب برای آنها دچار تردید و سردرگمی میکند. در این مقاله ابتدا با سادهسازی مؤثر IPO یک روش ابتکاری با نام SIPO پیشنهاد شده و کارایی آن در بهینهسازی 10 تابع آزمون استاندارد مورد سنجش قرار گرفته است. در ادامه به منظور طراحی و بهینهسازی، مقایسهگرهای دودنباله نسخه چندهدفه SIPO (با نام MOSIPO) ارائه و عملکرد آن در طراحی این نوع از مقایسهگرها بررسی و با روشهای هوشمند چندهدفه متداول و قدرتمند دیگر مقایسه شده است. نتایج حاصلشده به وضوح برتری SIPO و MOSIPO را نسبت به سایر روشها نشان میدهد.
The performance of an Analog/Digital (A/D) converter, various aspects like general architecture of the converter, architecture of the building blocks or design of the blocks can be improved. The comparator block is a fundamental block in data converters. Due to contradicting design purposes, circuit constraints and necessities, design of comparators and obtaining best circuit performance are complicated and challenging. Such challenges in circuit design necessitate presenting approaches which not only satisfy all the objectives but also, they are cost effective in terms of time and cost. One of the approaches which has recently attracted attentions is the heuristic algorithms based intelligent Methods. Inclined Planes system Optimization algorithm (IPO) is a novel heuristic algorithm inspired by dynamic movement of the objects on frictionless inclined planes. But despite its remarkable ability for exploration and exploitation of the search space, its standard model has complex relationships with many structural parameters that often confuse the user in choosing the effective values for them. In this paper, IPO algorithm is simplified to present a heuristic algorithm (called SIPO) and its efficiency in optimization of 10 standard benchmarks has been evaluated. Then, a multi-objective version of the proposed algorithm (called MOSIPO) for design and optimization of double tail comparator is presented and its efficiency in optimization of double tail comparator has been evaluated and compared with popular multi-objective intelligent methods. The results clearly demonstrate the improved performance and superiority of SIPO and MOSIPO compared to the other methods.
[1] S. Babayan-Mashhadi and R. Lotfi, "Analysis and design of a low-voltage low-power double-tail comparator," IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 343-352, Feb. 2013.
[2] Y. S. Ong, Artificial Intelligence Technologies in Complex Engineering Design, University of Southampton, Southampton, 2002.
[3] S. M. Zandavi, "Surface-to-air missile path planning using genetic and PSO algorithms," J. of Theoretical and Applied Mechanics, vol. 55, no. 3, pp. 801-812, Jan. 2017.
[4] B. P. De, R. Kar, D. Mandal, and S. P. Ghoshal, "An efficient design of CMOS comparator and folded cascode op-amp circuits using particle swarm optimization with an aging leader and challengers algorithm," International J. of Machine Learning and Cybernetics, vol. 7, no. 2, pp. 325-344, Apr. 2016.
[5] E. Yaqubi and S. H. Zahiri, "A CAD tool for design and optimizing latch comparators," Electronics Industries, vol. 8, no. 3, pp. 53-66, Mar. 2017.
[6] E. Yaqubi and S. H. Zahiri, "Optimum design of a double-tail latch comparator on power, speed, offset and size," Analog Integrated Circuits and Signal Processing, vol. 90, no. 2, pp. 309-319, Feb. 2017.
[7] K. B. Maji, R. Kar, D. Mandal, and S. Ghoshal, "Optimal design of low power high gain and high speed CMOS circuits using fish swarm optimization algorithm," International J. of Machine Learning and Cybernetics, vol. 9, no. 5, pp. 771-786, May 2018.
[8] S. Asaithambi and M. Rajappa, "Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm," Review of Scientific Instruments, vol. 89, no. 5, pp. 54-63, Apr. 2018.
[9] G. Gigerenzer and P. M. Todd, the ABC Research Group (Eds.): Simple Heuristics that Make Us Smart. Oxford University Press, New York, 1999.
[10] G. Gigerenzer and W. Gaissmaier, "Heuristic decision making," Annual Review of Psychology, vol. 62, no. 7, pp. 451-482, Jan. 2011.
[11] Z. Pooranian, M. Shojafar, and B. Javadi, "Independent task scheduling in grid computing based on queen bee algorithm," IAES International J. of Artificial Intelligence, vol. 1, no. 4, pp. 171-181, Dec. 2012.
[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-wesley Reading Menlo Park, vol. 412, 1989.
[13] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc., IEEE Int. Conf. on Neural Networks, , vol. 4, pp. 1942-1948, Perth, Australia, 27 Nov.-1 Dec. 1995.
[14] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: a gravitational search algorithm," Information Sciences, vol. 179, no. 13, pp. 2232-2248, Mar. 2009.
[15] S. Saremi, S. Mirjalili, and A. Lewis, "Grasshopper optimisation algorithm: theory and application," Advances in Engineering Software, vol. 105, no. 5, pp. 30-47, Jan. 2017.
[16] M. H. Mozaffari, H. Abdy, and S. H. Zahiri, "IPO: an inclined planes system optimization algorithm," Computing & Informatics, vol. 35, no. 1, pp. 222-240, May 2016.
[17] S. Mohammadi Esfahrood and S. H. Zahiri, "Comparing the performance of novel swarm intelligence optimization methods for optimal design of the sense amplifier-based flip-flops," Computational Intelligence in Electrical Engineering, vol. 11, no. 1, pp. 11-28, Oct. 2020.
[18] A. Mohammadi and S. H. Zahiri, "IIR model identification using a modified inclined planes system optimization algorithm," Artificial Intelligence Review, vol. 48, no. 2, pp. 237-259, Aug. 2017.
[19] م. عبدالرزاق نژاد،"طبقه¬بندي و شناسايي وب¬سايت¬هاي فيشينگ به كمك مجموعه قوانين فازي و الگوريتم اصلاح¬شده بهينه¬سازي صفحات شيبدار،" نشريه مهندسي برق و مهندسي كامپيوتر ايران، ب- مهندسي كامپيوتر، سال 14، شماره 3-ب، صص. 321-311 پاييز 1395.
[20] O. Bozorg-Haddad, M. Solgi, and H. A. Loaiciga, Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization, John Wiley & Sons, 2017.
[21] X. S. Yang, S. Deb, Y. X. Zhao, S. Fong, and X. He, "Swarm intelligence: past, present and future," Soft Computing, vol. 22, no. 18, pp. 5923-5933, Oct. 2018.
[22] N. S. Shahraki, A. Mohammadi, S. Mohammadi-Esfahrood, and S. H. Zahiri, "Improving the performance of analog integrated circuits using multi-objective metaheuristic algorithms," in Proc. IEEE 5th Conf. on Knowledge Based Engineering and Innovation, KBEI’19, pp. 822-826, Tehran, Iran, 28 Feb.-1 Mar. 2019.
[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Sept. 2002.
[24] M. Reyes-Sierra and C. C. Coello, "Multi-objective particle swarm optimizers: a survey of the state-of-the-art," International J. of Computational Intelligence Research, vol. 2, no. 3, pp. 287-308, Aug. 2006.
[25] B. Murmann and B. E. Boser, "A 12 b 75 MS/s pipelined ADC using open-loop residue amplification," in Proc. IEEE Int. Solid-State Circuits Conf., ISSCC’03, vol. 1, pp. 328-497, San Francisco, CA, USA, 13-13 Feb. 2003.
[26] P. P. Gandhi and N. Devashrayee, "A novel low offset low power CMOS dynamic comparator," Analog Integrated Circuits and Signal Processing, vol. 96, no. 1, pp. 147-158, Jul. 2018.
[27] V. Savani and N. Devashrayee, "Design and analysis of low-power high-speed shared charge reset technique based dynamic latch comparator," Microelectronics J., vol. 74, no. 5, pp. 116-126, Apr. 2018.
[28] S. Mohammadi-Esfahrood, A. Mohammadi, and S. H. Zahiri, "A simplified and efficient version of inclined planes system optimization algorithm," in Proc. 5th IEEE Conf. on Knowledge Based Engineering and Innovation, KBEI’19, pp. 504-509, Tehran, Iran, 28 Feb.-1 Mar. 2019.
[29] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Trans. on Evolutionary Computation, vol. 8, no. 3, pp. 256-279, Jun. 2004.
[30] X. Yao, Y. Liu, and G. Lin, "Evolutionary programming made faster," IEEE Trans. on Evolutionary Computation, vol. 3, no. 2, pp. 82-102, Jul. 1999.
[31] A. Mohammadi, M. Mohammadi, and S. H. Zahiri, "Design of optimal CMOS ring oscillator using an intelligent optimization tool," Soft Computing, vol. 22, no. 24, pp. 8151-8166, Dec. 2018.
[32] S. Mirjalili, P. Jangir, S. Z. Mirjalili, S. Saremi, and I. N. Trivedi, "Optimization of problems with multiple objectives using the multi-verse optimization algorithm," Knowledge-Based Systems, vol. 134, no. 1, pp. 50-71, Oct. 2017.
[33] S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah, "Grasshopper optimization algorithm for multi-objective optimization problems," Applied Intelligence, vol. 48, no. 4, pp. 805-820, Apr. 2018.