برنامهریزی مقاوم ریزشبکه هوشمند متصل به شبکه با در نظر گرفتن انتشار کربن در حضور بارهای قابل کنترل
محورهای موضوعی : مهندسی برق و کامپیوترامین نامور 1 , نوید تقی زادگان کلانتری 2 *
1 - دانشگاه شهید مدنی آذربایجان
2 - دانشگاه شهید مدنی آذربایجان
کلید واژه: ریزشبکه هوشمندانتشار کربنبارهای قابل کنترل توربین بادی, باتریمیکروتوربین,
چکیده مقاله :
ریزشبکه، مجموعهای از منابع تولیدکننده انرژی و مصرفکنندههای محلی است که میتواند با هزینه کم و قابلیت اطمینان زیاد بهرهبرداری شود. در این مقاله، یک مدل چندهدفه مقاوم برای کاهش هزینههای بهرهبرداری و انتشار کربن پیشنهاد شده است که در آن، یک ریزشبکه هوشمند از یک توربین بادی و میکروتوربین برای تغذیه بارهای متصل به خود بهره میگیرد. همچنین در این ریزشبکه از یک باتری برای ذخیره انرژی الکتریکی در ساعتهای کمباری و تحویل انرژی در ساعتهای پرباری استفاده شده است. از طرف دیگر این ریزشبکه متصل به شبکه اصلی است و میتواند با آن تبادل انرژی کند. مصرفکنندههای متصل به این ریزشبکه به دو گروه تقسیم میشوند. گروه اول، بارهای غیر قابل کنترل با الگوی بار ثابت و گروه دوم، بارهای قابل کنترل هستند که مصرف انرژی مشخصی دارند و زمان بهرهبرداری از آنها قابل کنترل است. مدل پیشنهادی، یک مسئله برنامهریزی خطی آمیخته با عدد صحیح است و با حلکننده CPLEX در نرمافزار GAMS شبیهسازی شده است. نتایج به دست آمده نشان میدهند زمانی که قیمت برق شبکه کم است، عمده بارها توسط برق شبکه تغذیه میشوند و زمانی که قیمت برق زیاد است بارها توسط میکروتوربین، باتری و توربین بادی تغذیه میشوند.
The microgrid is a set of local energy producers and consumers that can be utilized with low cost and high reliability. In this paper, a robust multi-objective model is proposed to reduce operating costs and carbon emissions in which a smart grid utilizes a wind turbine and micro-turbine to feed its connected loads. The microgrid also uses a battery to store electrical energy in off-peak hours and to deliver energy in on-peak hours. On the other hand, it is connected to the main grid and can exchange energy with it. Consumers connected to this microgrid are divided into two groups. The first group is uncontrollable loads with certain load pattern and the second group is controllable loads that have certain energy consumption but can be controlled by the operating time. The proposed model is a mixed-integer linear programming problem and is simulated with the CPLEX solver in GAMS software. The results show that when the price of electricity is low, the loads are often supplied by grid electricity, and when the price of electricity is high, they are often fed by micro-turbines, batteries, and wind turbines.
[1] A. A. A. Radwan and Y. A. R. I. Mohamed, "Linear active stabilization of converter-dominated DC microgrids," IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 203-216, Oct. 2012.
[2] Y. Xia, K. H. Ahmed, and B. W. Williams, "Wind turbine power coefficient analysis of a new maximum power point tracking technique," IEEE Trans. on Industrial Electronics, vol. 60, no. 3, pp. 1122-1132, Jun. 2013.
[3] D. T. Ton and M. A. Smith, "The US department of energy's microgrid initiative," The Electricity J., vol. 25, no. 8, pp. 84-94, Oct. 2012.
[4] Z. Wang, B. Chen, J. Wang, J. Kim, and M. M. Begovic, "Robust optimization based optimal DG placement in microgrids," IEEE Trans. on Smart Grid, vol. 5, no. 5, pp. 2173-2182, Sept. 2014.
[5] S. A. Arefifar and Y. A. R. I. Mohamed, "DG mix, reactive sources and energy storage units for optimizing microgrid reliability and supply security," IEEE Trans. on Smart Grid, vol. 5, no. 4, pp. 1835-1844, May 2014.
[6] A. Khodaei and M. Shahidehpour, "Microgrid-based co-optimization of generation and transmission planning in power systems," IEEE Trans. on Power Systems, vol. 28, no. 2, pp. 1582-1590, Dec. 2013.
[7] L. Guo, W. Liu, B. Jiao, B. Hong, and C. Wang, "Multi-objective stochastic optimal planning method for stand-alone microgrid system," IET Generation, Transmission & Distribution, vol. 8, no. 7, pp. 1263-1273, Feb. 2014.
[8] S. A. Arefifar, A. R. M. Yasser, and T. H. El-Fouly, "Optimum microgrid design for enhancing reliability and supply-security," IEEE Trans. on Smart Grid, vol. 4, no. 3, pp. 1567-1575, Aug. 2013.
[9] V. Kalkhambkar, R. Kumar, and R. Bhakar, "Joint optimal allocation methodology for renewable distributed generation and energy storage for economic benefits," IET Renewable Power Generation, vol. 10, no. 9, pp. 1422-1429, Jun. 2016.
[10] W. Gu, Z. Wu, R. Bo, W. Liu, G. Zhou, W. Chen, et al., "Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: a review," International J. of Electrical Power & Energy Systems, vol. 54, pp. 26-37, Jan. 2014.
[11] S. A. Arefifar, Y. A. R. I. Mohamed, and T. El-Fouly, "Optimized multiple microgrid-based clustering of active distribution systems considering communication and control requirements," IEEE Trans. on Industrial Electronics, vol. 62, no. 2, pp. 711-723, Aug. 2015.
[12] A. R. Malekpour, T. Niknam, A. Pahwa, and A. K. Fard, "Multi-objective stochastic distribution feeder reconfiguration in systems with wind power generators and fuel cells using the point estimate method," IEEE Trans. Power Syst, vol. 28, no. 2, pp. 1483-1492, Oct. 2013.
[13] X. Shen, M. Shahidehpour, S. Zhu, Y. Han, and J. Zheng, "Multi-stage planning of active distribution networks considering the co-optimization of operation strategies," IEEE Trans. on Smart Grid, vol. 9, no. 2, pp. 1425-1433, Jul. 2018.
[14] X. Guan, Z. Xu, and Q. S. Jia, "Energy-efficient buildings facilitated by microgrid," IEEE Trans. on Smart Grid, vol. 1, no. 3, pp. 243-252, Nov. 2010.
[15] E. Fabrizio, V. Corrado, and M. Filippi, "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, vol. 35, no. 3, pp. 644-655, Mar. 2010.
[16] S. Saboori, R. Kazemzadeh, and H. Saboori, "Stochastic analysis of wind energy uncertainty impact on ISO risk-taking in joint energy and reserve markets using conditional value at risk," J. of Renewable and Sustainable Energy, vol. 8, no. 5, p. 053101, Sept. 2016.
[17] S. Pazouki and M. R. Haghifam, "Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty," International J. of Electrical Power & Energy Systems, vol. 80, pp. 219-239, Sept. 2016.
[18] F. Adamek, M. Arnold, and G. Andersson, "On decisive storage parameters for minimizing energy supply costs in multicarrier energy systems," IEEE Trans. on Sustainable Energy, vol. 5, no. 1, pp. 102-109, Aug. 2014.
[19] E. E. Ufluoglu and G. Kayakutlu, "Mathematical model for a microgrid consisting of wind turbine, PV panels, and energy storage unit," J. of Renewable and Sustainable Energy, vol. 8, no. 5, p. 054101, Sept. 2016.
[20] J. Rajasekharan and V. Koivunen, "Optimal energy consumption model for smart grid households with energy storage," IEEE J. of Selected Topics in Signal Processing, vol. 8, no. 6, pp. 1154-1166, Oct. 2014.
[21] M. Q. Wang and H. Gooi, "Spinning reserve estimation in microgrids," IEEE Trans. on Power Systems, vol. 26, no. 3, pp. 1164-1174, Jan. 2011.
[22] J. Sumbera, Modelling Generator Constraints for the Self-Scheduling Problem, Econometrics and Operational Research, University of Economics, Prague, Czech Republic, 2012.
[23] S. Moradi, R. Ghaffarpour, A. M. Ranjbar, and B. Mozaffari, "Optimal integrated sizing and planning of hubs with midsize/large CHP units considering reliability of supply," Energy Conversion and Management, vol. 148, pp. 974-992, Sept. 2017.
[24] S. Xia, X. Luo, K. W. Chan, M. Zhou, and G. Li, "Probabilistic transient stability constrained optimal power flow for power systems with multiple correlated uncertain wind generations," IEEE Trans. on Sustainable Energy, vol. 7, no. 3, pp. 1133-1144, Mar. 2016.
[25] T. Logenthiran, D. Srinivasan, and K. Vanessa, "Demand side management of smart grid: load shifting and incentives," J. of Renewable and Sustainable Energy, vol. 6, no. 3, p. 033136, May 2014.
[26] N. Li, L. Chen, and S. H. Low, "Optimal demand response based on utility maximization in power networks," in Proc. IEEE Power and Energy Society General Meeting, 8 pp., Detroit, MI, USA, 24-28 Jul. 2011.
[27] M. Shamshirband, J. Salehi, and F. S. Gazijahani, "Decentralized trading of plug-in electric vehicle aggregation agents for optimal energy management of smart renewable penetrated microgrids with the aim of CO2 emission reduction," J. of Cleaner Production, vol. 200, pp. 622-640, Nov. 2018.
[28] A. H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia, "Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid," IEEE Trans. on Smart Grid, vol. 1, no. 3, pp. 320-331, Nov. 2010.
[29] R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes, J. Llanos, et al., "A microgrid energy management system based on the rolling horizon strategy," IEEE Trans. on Smart Grid, vol. 4, no. 2, pp. 996-1006, Jan. 2013.
[30] ع. مهديزاده، ك. نويد تقيزادگان و ج. صالحي، "بهرهبرداري بهينه ريزشبكه AC در حضور خودروهاي برقي تحت مديريت طرف تقاضا،" مهندسی برق و مهندسی كامپیوتر ایران، الف- مهندسي برق، سال 16، شماره 3، صص. 204-196، پاييز 1397.