ساختاری مبتنی بر نظریه بازی جهت مدیریت تراکم بر اساس برنامهریزی مجدد ژنراتورها و اجرای پاسخگویی بار
محورهای موضوعی : مهندسی برق و کامپیوترمحمدحسن مرادی 1 * , علیرضا رئیسی 2 , سیدمهدی حسینیان 3
1 - دانشگاه بوعلی سینا همدان
2 - دانشگاه بوعلی سینا
3 - دانشگاه بوعلی سینا
کلید واژه: مدیریت تراکم پاسخگویی بار خردهفروشان مکانیزم بازار,
چکیده مقاله :
در این مقاله الگوریتمی جهت مدیریت تراکم بر اساس برنامهریزی مجدد تولید و مصرف پیشنهاد میشود. الگوریتم پیشنهادی شامل دو بخش میباشد: 1) برنامهریزی مجدد تولید و 2) مدیریت سمت مصرف. در الگوریتم پیشنهادی مدیریت سمت مصرف بر اساس پاسخگویی بار میباشد و اجرای آن بر اساس مکانیزم بازار ارائه میشود که منفعت خردهفروشان نیز در آن لحاظ میگردد. بر اساس الگوریتم پیشنهادی دو شرط جهت مدیریت تراکم بررسی میشود: نخست جهت تأمین امنیت شبکه اپراتور مستقل سیستم (ISO) قیود خطوط را بررسی میکند که آیا نقضی رخ داده است؟ در صورتی که پاسخ مثبت باشد برنامهریزی مجدد ژنراتورها انجام میشود. در مرحله بعدی ISO بررسی میکند که آیا جهش قیمتی رخ داده است؟ در صورتی که پاسخ مثبت باشد ISO با استفاده از سیگنالهای اقتصادی خردهفروشان را جهت کاهش تقاضایشان در باسهای مشخص، تشویق و راهنمایی میکند. خردهفروشان در واکنش به سیگنالهای اقتصادی و جهت بیشینهکردن درآمدشان، در معامله پاسخگویی بار با DRAs شرکت میکنند و تقاضاهای جدیدشان را برای ISO ارسال میکنند. جهت مدلسازی رفتار شرکتکنندگان در معامله پاسخگویی بار از تئوری بازی استکلبرگ استفاده میشود که در آن خردهفروشان به عنوان بازیکنهای پیشرو، بر اساس سیگنالهای اقتصادی اپراتور بازار مقادیر کاهش تقاضا و قیمت خرید پاسخگویی بار را مشخص میکنند و DRAs به عنوان بازیکنهای پیرو جهت بیشینهکردن سودشان بر اساس استراتژی خردهفروشان با هم رقابت میکنند. در این مقاله الگوریتم پیشنهادی برای شبکه 14باس اجرا میشود. نتایج شبیهسازیها نشان میدهد که مدیریت تراکم بر اساس الگوریتم پیشنهادی ضمن کاهش تراکم شبکه سبب افزایش منفعت خردهفروشان نیز میگردد.
This paper proposes a new algorithm for addressing the congestion problem in the network through generation and demand rescheduling. A demand response market based programming is developed for demand rescheduling by capturing the benefit of retailers. In the proposed algorithm two tasks are implemented by the ISO for controlling network security and spark prices. In the case of any network defect, generator re-dispatching is conducted by the ISO and in the case of any spark price, retailers’ demands in specific buses decrease via some economic signals, sent by the ISO. Having such economic signalsthe retailers then participate in a demand response trade with demand response aggregators (DRAs) to optimize their incomes and next to resubmit their demands to the ISO. A Stackelberg game is employed to capture the interplay among retailers, the leaders, and DRAs, the followers. Retailers choose their strategies, the amount and price of required demand response. Then, DRAs compete based on the retailers’ strategies to maximize their payoffs and to choose their strategies, the demand response sale amount. An IEEE bus test network with 14 buses is considered to demonstrate the feasibility of the proposed method. The paper demonstrates that the proposed method enables to alleviate the congestion problem while the retailers’ incomes increase.
[1] M. A. F. Ghazvini, J. Soares, N. Horta, R. Neves, R. Castro, and Z. Vale, "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, vol. 151 no. 1 pp. 102–118, Aug. 2015.
[2] M. Heidarifar and H. Ghasemi, "A network topology optimization model based on substation and node-breaker modeling," IEEE Trans. Power Systems, vol. 31, no. 1, pp. 247-255, Jan. 2016.
[3] A. Mishra and G. V. Nagesh Kuma, "Congestion management of power system with interline power flow controller using disparity line utilization factor and multi-objective differential evolution," CSEE J. of Power and Energy Systems, vol. 1, no. 3, pp. 76-85, Sept. 2015.
[4] L. S. Vargas, G. Bustos-Turu, and F. Larrain, "Wind power curtailment and energy storage in transmission congestion management considering power plants ramp rates," IEEE Trans. on Power Systems, , vol. 30, no. 5, pp. 2498-2506, Sept. 2015.
[5] T. S. Chung, D. Z. Fang, and X. Y. Kong, "Power market congestion management incorporating demand elasticity effects," WSEAS Trans. Power Syst., vol. 1, no. 7, pp. 1378-1382, 2006.
[6] M. Carrion, A. J. Conejo, and J. M. Arroyo, "Forward contracting and selling price determination for a retailer," IEEE Trans. on Power Systems, vol. 22, no. 4, pp. 2105-2114, 2007.
[7] L. Chen, N. Li, S. H. Low, and J. C. Doyle, "Two market models for demand response in power networks," in Proc. IEEE Int. Conf. Smart Grid Commun, SmartGridComm'10, pp. 397-402, Gaithersburg, MD, USA, 4-6 Oct. 2010.
[8] R. Plink, DR to Alleviate National Congestion in the Dutch Power System, Technical University of Delft, 2013.
[9] I. J. Perez-Arriaga and L. Olmos, "A plausible congestion management scheme for the internal electricity market of the european union," Utilities Policy, vol. 13, no. 2, pp. 117-134, Jun. 2005.
[10] S. Nojavan, B. Mohammadi-Ivatloo, and K. Zare, "Optimal bidding strategy of electricity retailers using robust optimisation approach considering time-of-use rate demand response programs under market price uncertainties," IET Generation, Transmission & Distribution, vol. 9, no. 4, pp. 328-338, 2015.
[11] M. Zugno, J. M. Morales, P. Pinson, and H. Madsen, "A bilevel model for electricity retailers' participation in a demand response market environment," Energy Economics, vol. 36, no. 1, pp. 182-197, Mar. 2013.
[12] A. Yousefi, T. T. Nguyen, H. Zareipour, and O. P. Malik, "Congestion management using demand response and FACTS devices," Electrical Power and Energy Systems, vol. 37, no. 1, pp. 78-85, May 2012.
[13] W. Liu, Q. Wu, F. Wen, and J. Østergaard, "Day-ahead congestion management in distribution systems through household demand response and distribution congestion prices," IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2739-2747, Nov. 2014.
[14] S. Surender Reddy, "Multi-objective based congestion management using generation rescheduling and load shedding," IEEE Trans. Power Systems, vol. 32, no. 99, pp. 852-863, May 2016.
[15] Power Systems Test Cases Archive, Aug. 1999, [Online]. Available: http://www.ee.washington.edu/research/pstca/.
[16] D. T. Nguyen, M. Negnevitsky, and M. D. Groot, "Market-based demand response scheduling in a deregulated environment," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1948-1956, Dec. 2013.
[17] S. M. Sadr and H. R. Mashhadi, "Evaluation of price-sensitive loads' impacts on transmission network congestion using an analytical approach," IET Generation, Transmission & Distribution, vol. 9, no. 6, pp. 523-530, Apr. 2015.
[18] E. Nekouei, T. Alpcan, and D. Chattopadhyay, "Game-theoretic frameworks for demand response in electricity markets," IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 748-758, Mar. 2015.