تحليل مسأله بهينهسازي تخصيص ظرفيت در پروکسيهاي SIP و ارائه الگوريتم کنترل اضافه بار با عدالت Max-Min
محورهای موضوعی : مهندسی برق و کامپیوترمجتبی جهانبخش 1 * , سیدوحید ازهری 2 , وحید قاسمخانی 3
1 - دانشگاه علم و صنعت ایران
2 - دانشگاه علم و صنعت ایران
3 - دانشگاه علم و صنعت ايران
کلید واژه: اضافه بار بهينهسازي پروتکل SIP پروکسي عدالتmax-min,
چکیده مقاله :
پروتکل SIP يک پروتکل لايه کاربرد است که براي ايجاد، مديريت و اتمام جلسات چندرسانهاي در زيرسيستمهاي چندرسانهاي IP در نظر گرفته شده است. استفاده وسيع از این پروتکل منجر به حجم بالاي ترافيک در پروکسيهاي SIP شده و تخصيص با دقت منابع پردازشي به جريانها را به يک مسأله با اهميت بالا تبديل ميکند. در اين مقاله به تحليل مسأله بهينهسازي تخصيص منابع پردازشي در پروکسيهاي SIP ميپردازيم و دو تابع هدف حداکثرسازی مجموع گذردهي و حداقلسازی مربعات را مورد ارزيابي قرار ميدهيم. تابع هدف حداکثرسازی مجموع گذردهي، به جريانهاي بین دامنهاي اولویت پایینتری را اختصاص ميدهد زيرا این جریانها برخلاف جريانهای داخل دامنهای از دو پروکسي میانی عبور ميکنند. از سوی دیگر، تابع هدف حداقلسازی مربعات به سیاست با عدالت max-min منتهی میشود و بنابراین به منظور عملياتيسازي این نوع سياست، در پروکسیها از سرويسدهي نوبت گردشی (RR) استفاده میکنیم و يک الگوريتم ارائه میدهیم که با کنترل طول صف جريانها، اضافه بار را کنترل کرده و از ارسال مجدد و ناپايداري جلوگيري میکند. این الگوریتم در مقايسه با روشهای موجود به استفاده بهتر از منابع پردازشي در پروکسيها منتهی ميشود.
Session Initiation Protocol (SIP) is an application layer protocol designed to create, manage, and terminate multimedia sessions in the IP multimedia subsystem (IMS). The widespread use of this protocol results in high traffic volume over SIP proxies, requiring delicate CPU allocation to flows. In this paper, we analyze the optimization problem of resource allocation in SIP proxies with two objective functions: maximizing total throughput and minimizing the least squares. Maximizing total throughput, prioritizes intra-domain flows over inter-domain ones, as the latter pass through two intermediate proxies. On the other hand, minimizing the least squares corresponds to a max-min fairness policy. Hence, we use round robin scheduling in proxies. In addition, we propose a SIP overload control algorithm that limits re-transmissions and prevents instability of proxies by controlling the length of SIP message backlog for each flow. This algorithm leads to better use of processing resources, in comparison with existing overload control algorithms.
[1] J. Rosenberg, et al., SIP: Session Initiation Protocol, IETF (RFC 3261), Jun. 2002.
[2] J. Rosenberg, Requirements for Management of Overload in the Session Initiation Protocol, RFC-5390 (Informational), Dec. 2008.
[3] E. Noel and C. Johnson, "Novel overload controls for SIP networks," in Proc. 21st Int. Teletraffic Congress, 8 pp., Sept. 2009.
[4] M. Ohta, "Overload control in a SIP signaling network," International Journal of Computer, Electrical, Automation, Control and Information Engineering, vol. 1, no. 12, pp. 4076-4081, Dec. 2007.
[5] S. Montagna and M. Pignolo, "Load control techniques in SIP signaling servers using multiple thresholds," in Proc. the 13th Int. Telecommunications Network Strategy and Planning Symp., 6 pp., Sept. 2008.
[6] M. Khazaei and N. Mozayani, "A dynamic distributed overload control mechanism in SIP networks with holonic multi-agent systems," Telecommun Syst., DOI 10.1007/s11235-015-0133-3, Dec. 2015.
[7] L. De Cicco, G. Cofano, and S. Mascolo, "Local SIP overload control: controller design and optimization by extremum seeking," IEEE Trans. on Control of Network Systems, vol. 2, no. 3, pp. 267-277, Feb. 2015.
[8] V. Hilt and I. Widjaja, "Controlling overload in networks of SIP servers," in Proc. of IEEE Int. Conf. on Network Protocols, ICNP'08, pp. 83-93, Orlando, FL, USA, 19-22 Oct. 2008.
[9] V. Gurbani, V. Hilt, and H. Schulzrinne, Session Initiation Protocol (SIP) Overload Control, Internet Engineering Task Force (IETF), RFC-7339, ISSN: 2070-1721, Sep. 2014.
[10] E. Noel and P. M. Williams, "Session Initiation Protocol (SIP) Rate Control," Internet Engineering Task Force (IETF), RFC-7415, Feb. 2015.
[11] C. Shen, H. Schulzrinne, and E. Nahum, "Session initiation protocol (SIP) server overload control: design and evaluation," in Principles, Systems and Applications of IP Telecommunications, Services and Security for Next Generation Networks, Springer, pp. 149-173, 2008.
[12] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, "Layering as optimization decomposition: a mathematical theory of network architectures," Proceedings of the IEEE, vol. 95, no. 1, pp. 255-312, Jan. 2007.
[13] F. P. Kelly, A. Maulloo, and D. Tan, "Rate control for communication networks: shadow prices, proportional fairness and stability," J. Operations Res. Soc., vol. 49, no. 3, pp. 237-252, Mar. 1998.
[14] R. G. Garroppo, S. Giordano, S. Niccolini, and S. Spagna, "A prediction-based overload control algorithm for SIP servers," IEEE Trans. on Network and Service Management, vol. 8, no. 1, pp. 39-51, Mar. 2011.
[15] A. Akbar, S. Mahaboob Basha, and S. A. Satar, "A cooperative overload control method for SIP servers," in Proc. Int. Conf. on Communications and Signal Processing, ICCSP'15, pp. 1296-1300, Melmaruvathur, India, 2-4 Apr. 2015.
[16] G. Mishra, S. Dharmaraja, and S. Kar, "Reducing session establishment delay using timed out packets in SIP signaling network," International J. of Communication Systems, vol. 29, no. 2, pp. 262-276, Jan. 2016.
[17] B. Upadhyay, A. Mishra, and S. B. Upadhyay, "AIPC: counter-active analysis of overload control mechanism for sip server," International J. of Computer Engineering & Technology, vol. 1, no. 1, pp. 128-140, Jan. 2014.
[18] J. Liao, et al., "A distributed end-to-end overload control mechanism for networks of SIP servers," The International J. of Computer and Telecommunications Networking, vol. 56, no. 12, pp. 2847-2868, Aug. 2012.
[19] M. Jahanbakhsh, S. V. Azhari, J. Enayati-Zadeh, and M. Baghdadi, "Local and distributed SIP overload control solution improving sustainability of sip networks," Int. J. Commun. Syst., vol. 30, 27 pp., Apr. 2017.
[20] J. Wang, J. Liao, T. Li, J. Wang, J. Wang, and Q. Qi, "Probe-based end-to-end overload control for networks of SIP servers," J. of Network and Computer Applications, vol. 41, pp. 114-125, May 2014.
[21] M. Homayouni, H. Nemati, V. Azhari, and A. Akbari, "Controlling overload in SIP proxies: an adaptive window based approach using no explicit feedback," in Proc. IEEE Global Communications Conf., GLOBECOM'10, 5 pp. Miami, FL, USA, 6-10 Dec. 2010.
[22] A. Coluccia, A. D. Alconzo, and F. Ricciato, "On the optimality of max-min fairness in resource allocation," Annals of Telecommunications, vol. 67, no. 1-2, pp. 15-26, Feb. 2012.
[23] S. V. Azhari and H. Nemati, "Stability analysis of tandem SIP proxies," in Proc. IEEE Int Conf. on Communications, ICC'12, pp. 1244-1248, Ottawa, ON, Canada ,10-15 Jun. 2012.
[24] M. Grant and S. Boyd, CVX: MATLAB software for Disciplined Convex Programming, http://stanford.edu/~boyd/cvx.
[25] M. Shreedhar and G. Varghese, "Efficient fair queueing using deficit round-robin," IEEE/ACM Trans. on Networking, vol. 4, no. 3, pp. 375-385, Jun. 1996.