ارائه یک الگوریتم جدید برای تعیین جهت خطا در خطوط انتقال مبتنی بر بهینهسازی حداقل مربعات
محورهای موضوعی : مهندسی برق و کامپیوترصباح دانیار 1 * , الهه نوروزی 2
1 - دانشگاه ایلام
2 - دانشگاه ایلام
کلید واژه: اشباع CT حفاظت دیجیتال رله جهتی مؤلفه توالی مثبت ناحیه مرده,
چکیده مقاله :
با توجه به کاربرد وسیع حفاظت جهتی در شبکههای فوق توزیع و انتقال، در این مقاله یک الگوریتم جدید برای تعیین جهت خطا در خطوط انتقال پیشنهاد شده است. این الگوریتم دارای ناحیه مرده نمیباشد و همچنین برای انواع خطاهای داخلی و خارجی و بدون توجه به محل خطا نیز به درستی عمل میکند. این عملکرد صحیح تحت شرایط خطاهای نزدیک رله نیز صادق است. الگوریتم در تشخیص خطا سریع عمل کرده و جهت درست خطا را در شرایط مختلفی از قبیل اشباع CT، نوسانات توان و وجود منابع قوی و ضعیف تشخیص میدهد. همچنین مقاومت خطا و زاویه شروع خطا نیز تأثیری در عملکرد صحیح الگوریتم ندارد. فرکانس نمونهبرداری پایین الگوریتم پیشنهادی به آن قابلیت پیادهسازی صنعتی میدهد. جهت ارزیابی الگوریتم، شبیهسازیها با استفاده از نرمافزار EMTP-RV انجام گرفته است. الگوریتم توسط دادههای میدانی استخراجشده از پستkV 230 مانشت، واقع در استان ایلام نیز اعتبارسنجی شده است. نتایج نشان میدهد که الگوریتم پیشنهادی دارای سرعت و قابلیت اطمینان مناسبی میباشد.
Directional protection is a crucial function in advanced transmission network relays. In this paper, a novel directional algorithm for transmission line protection is presented. Proposed algorithm responds to all kind of faults accurately without any dead zone. In this scheme, discrimination between internal and external faults will be done precisely even for close relay faults. The proposed algorithm utilizes a close form equation achieved by least squares optimization. Directional protection function is carried out based on proposed algorithm under various conditions such as current transformer saturation, power swing and source capacity changes. Moreover, variation on some parameters such as fault inception and fault resistance has only negligible effects on algorithm performance. Due to employing of low sampling frequency, hardware implementation of the proposed algorithm is not complicated. Algorithm performance is evaluated by applying the field data from Manesht 230kV substation located at Ilam province as well as extracted data form EMTP-RV simulations. Simulation results verify the speed and reliability of the proposed algorithm.
[1] B. Gu, J. Tan, and H. Wei, "High speed directional relaying algorithm based on the fundamental frequency positive sequence superimposed components," IET Generation, Transmission, & Distribution, vol. 8, no. 7, pp. 1211-1220, Jul. 2014.
[2] H. Gao and P. A. Crossley, "Design and evaluation of a directional algorithm for transmission-line protection based on positivesequence fault components," IEE Proc. Generation, Transmission, and Distribution, vol. 153, no. 6, pp. 711-718, Nov. 2006.
[3] G. Benmouyal and J. Mahseredjian, "A combined directional and faulted phase selector element based on incremental quantities," IEEE Trans. on Power Delivery, vol. 16, no. 4, pp. 478-484, Aug. 2001.
[4] M. M. Eissa, "Evaluation of a new current directional protection technique using field data," IEEE Trans. on Power Delivery, vol. 20, no. 2, pp. 566-572, Apr. 2005.
[5] Y. Q. Xia, J. L. He, and K. K. Li, "A reliable digital directional relay based on compensated voltage comparison for EHV transmission lines," IEEE Trans. on Power Delivery, vol. 7, no. 4, pp. 1955-1962, Aug. 1992.
[6] H. Jia-Li, Z. Yuan-Hui, and Y. Nian-Ci, "New type power line carrier relaying system with directional comparison for EHV transmission lines," IEEE Trans. on Power Apparatus and Systems, vol. 4, no. 2, pp. 429-436, Feb. 1984.
[7] A. Ukil, B. Deck, and V. H. Shah, "Current-only directional overcurrent relay," IEEE Sensors J., vol. 11, no. 6, pp. 1403-1404, Jun. 2011.
[8] M. E. Masoud and M. M. A. Mahfouz, "Protection scheme for transmission lines based on alienation coefficients for current signals," IET Generation, Transmission, & Distribution, vol. 4, no. 11, pp. 1236-1244, Nov. 2010.
[9] A. T. Johns, "New ultra-high-speed directional comparison technique for the protection of EHV transmission lines," IEE Proc. C. Generation, Transmission, and Distribution, vol. 127, no. 4, pp. 228-239, 1980.
[10] M. Chamia and S. Liberman, "Ultra high speed relay for EHV/UHV transmission lines-development, design and application," IEEE Trans. on Power Apparatus and Systems, vol. 1, no. 6, pp. 2104-2116, Nov. 1978.
[11] M. Vitins, "A fundamental concept for high speed relaying," IEEE Trans. on Power Apparatus and Systems, vol. 4, no. 1, pp. 163-173, Jan. 1981.
[12] X. Dong, Z. Geng, Y. Ge, F. Zhong, and B. Xu, "Application of wavelet transform in power system fault signal analysis," Computer Standards & Interfaces, vol. 20, no. 6-7, pp. 495, 1999.
[13] A. L. O. Fernandez and N. K. I. Ghonaim, "A novel approach using a FIRANN for fault detection and direction estimation for high-voltage transmission lines," IEEE Trans. on Power Delivery, vol. 17, no. 4, pp. 894-900, Oct. 2002.
[14] A. Poeltl and K. Frohlich, "Two new methods for very fast fault type detection by means of parameter fitting and artificial neural networks," IEEE Trans. on Power Delivery, vol. 14, no. 4, pp. 1269-1275, Oct. 1999.
[15] M. Sanaye-Pasand and O. P. Malik, "High speed transmission line directional protection evaluation using field data," IEEE Trans. on Power Delivery, vol. 14, no. 3, pp. 851-856, Jul. 1999.
[16] M. Sanaye-Pasand and O. P. Malik, "High speed transmission system directional protection using an Elman network," IEEE Trans. on Power Delivery, , vol. 13, no. 4, pp. 1040-1045, Oct. 1998.
[17] M. Sanaye-Pasand and O. P. Malik, "Implementation and laboratory test results of an Elman network-based transmission line directional relay," IEEE Trans. on Power Delivery, , vol. 14, no. 3, pp. 782-788, Jul. 1999.
[18] T. S. Sidhu, H. Singh, and M. S. Sachdev, "An artificial neural network for directional comparison relaying of transmission lines," in Proc. 6th Int. Conf. on Developments in Power System Protection, pp. 282-285, Apr. 1997.
[19] Z. N. Stojanovic and M. B. Djuric, "The algorithm for directional element without dead tripping zone based on digital phase comparator," Electric Power Systems Research, vol. 81, no. 2, pp. 377-383, Feb. 2011.
[20] H. Dashti, M. Sanaye Pasand, and M. Davarpanah, "Fast and reliable CT saturation detection using a combined method," IEEE Trans. on Power Delivery, vol. 24, no. 3, pp. 1037-1044, Jul. 2009.
[21] S. R. Mohanty, A. K. Pradhan, and A. Routray, "A cumulative sum-based fault detector for power system relaying application," IEEE Trans. on Power Delivery, , vol. 23, no. 1, pp. 79-86, Jan. 2008.
[22] P. K. Nayak, A. K. Pradhan, and P. Bajpai, "Detecting fault during power swing for a series compensated line," in Proc. IEEE Int. Conf. on Energy, Automation, and Signa,l ICEAS'11, 28-30 Dec. 2011.
[23] F. Badrkhani Ajaei, M, Sanaye-Pasand, M. Davarpanah, A. Rezaei-Zare, and R. Iravani, "Compensation of the current-transformer saturation effects for digital relays," IEEE Trans. on Power Delivery, vol. 26, no. 4, pp. 2531-2540, Oct. 2011.