کاربرد حفاظت ناحیه گسترده برای مقابله با خاموشیهای سراسری ناشی از ناپایداری زاویهای
محورهای موضوعی : مهندسی برق و کامپیوترسعید کیارستمی 1 , مجتبی خدرزاده 2 *
1 - دانشگاه شهید بهشتی
2 - دانشگاه شهید بهشتی
کلید واژه: خروجهای زنجیرهای سیستم قدرت شبکه عصبی ناپایداری زاویهای,
چکیده مقاله :
در این مقاله یک سیستم حفاظت ناحیه گسترده برای مقابله با خاموشیهای گسترده ناشی از ناپایداریهای زاویهای پیشنهاد میشود. در ابتدا خاموشی وسیع، مدلسازی شده و سپس سناریوهای منجر به خاموشی گسترده استخراج خواهند شد. با استفاده از شبکه عصبی مصنوعی، حوادثی که منجر به وقوع ناپایداری زاویهای در سیستم میشوند تعیین میگردند. سپس با استفاده از الگوریتمی که از اطلاعات به دست آمده از واحدهای اندازهگیری فازور (PMUها) استفاده میکند، ژنراتورهای همنوای سیستم شناسایی شده و با قطع خطوط ضعیف و حذف بار مناسب، سیستم به جزایر پایدار تجزیه میشود. صحت روش پیشنهادی بر روی شبکه استاندارد 39باسه IEEE نشان داده شده است.
In this paper, a Wide-Area protection system to deal with rotor angle instabilities is proposed. Firstly, a system blackout model is developed and secondly the extreme contingencies that lead to large blackouts are extracted. Initiating events that ultimately lead to rotor angle instabilities are determined by artificial neural network (ANN). Coherent generators are detected by an algorithm using the data presented by phasor measurement units (PMUs). Based on identification of coherent generators, the power system is split into stable islands by disconnecting the weak interconnecting lines and load shedding. The performance of the proposed strategy is verified by simulations on the IEEE 39-bus sample power system.
[1] R. Baldick, et al., "Initial review of methods for cascading failure analysis in electric power transmission systems," in Proc. IEEE Power and Energy Society General Meeting, 8 pp, 20-24 Jul. 2008.
[2] H. Song and M. Kezunovic, "A new analysis method for early detection and prevention of cascading events," Electric Power System Research, vol. 77, no. 8, pp. 1132-1142, Jun. 2007.
[3] N. Bhatt, et al., "Assessing vulnerability to cascading outages," in Proc. IEEE/PES Power Systems Conference and Exposition, PSCE'09, 9 pp., 15-18 Mar. 2009.
[4] Z. Guohua, et al., "Vulnerability Assessment of Bulk Power Grid Based on Complex Network Theory," in Proc. Third Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies, DRPT'08, pp. 1554-1558. Nanjing China, 6-9 Apr. 2008.
[5] F. Fonteneau-Belmudes, D. Ernst, and L. Wehenkel, "Cross-entropy based rare-event simulation for the identification of dangerous events in power systems," in Proc. of the 10th Int. Conf. on Probabilistic Methods Applied to Power Systems, PMAPS'08, 7 pp., Rincon, Puerto Rico, 25-29 May 2008.
[6] F. Fonteneau-Belmudes, D. Ernst, and L. Wehenkel, "A rare event approach to build security analysis tools when N-k (k > 1) analyses are needed (as they are in large scale power systems)," in Proc. of the 2009 IEEE Bucharest Power Tech Conf., 8 pp., Bucharest, Romania, 28 Jun.-2 Jul. 2009.
[7] G. C. Ejebe and B. F. Wollenberg, "Automatic contingency selection," IEEE Trans. Power Apparatus Syst. vol. 98, no. 1, pp. 97-109, Jan/Feb. 1979.
[8] J. Barkans and D. Zalostiba, Protection against Blackouts and Self-Restoration of Power Systems, RTU Publishing House, Riga, 2009.
[9] M. Begovic, et al., "Wide-area protection and emergency control," Proceedings of the IEEE, vol. 93, no. 5, pp. 876-891, May 2005.
[10] F. Hashiesh, H. E. Mostafa, A. R. Khatib, I. Helal, and M. M. Mansour, "An intelligent wide area synchrophasor based system for predicting and mitigating transient instabilities," IEEE Trans. Smart Grid, vol. 3, no. 2, pp.645-652, Jun. 2012.
[11] D. P. Nedic, I. Dobson, D. S. Kirschen, B. A. Carreras, and V. E. Lynch, "Criticality in a cascading failure blackout model," International J. of Electrical Power and Energy Systems, vol. 28, no. 9, pp. 627-633, Nov. 2006.
[12] S. Mei, X. Zhang, and M. Cao, Power Grid Complexity, Tsinghua University Press, 2011.
[13] A. Bahbah and A. A. Girgis, "New method for generators' angles and angular velocities prediction for transient stabilityassessment of multimachine power systems using recurrent artificialneural network," IEEE Trans. Power Syst., vol. 19, no. 2, pp. 1015-1022, May 2004.
[14] S. Honglei, W. Junyong, and W. Linfeng, "Controlled islanding based on slow-coherency and KWP theory," in Proc. IEEE Innovative Smart Grid Technologies-Asia, ISGT Asia, 6 pp., May 2012.
[15] D. Hu and M. Venkatasubramanian, "New wide area algorithms for detecting angle of instability using synchrophasors," in Proc. IEEE Power Engineering Society General Meeting, 8 pp., Spokane, WA, USA, 24-28 Jun. 2007.