برنامهریزی توسعه منابع انرژی گسترده با در نظر گرفتن سیاستهای حمایتی سیاستگذار
محورهای موضوعی : مهندسی برق و کامپیوترعلیرضا شیخی فینی 1 , محسن پارسامقدم 2 * , محمدکاظم شیخالاسلامی 3
1 - دانشگاه تربیت مدرس
2 - دانشگاه تربیت مدرس
3 - دانشگاه تربیت مدرس
کلید واژه: برنامهریزی دینامیکی تئوری بازی سیاستهای حمایتی منابع انرژی گسترده,
چکیده مقاله :
این مقاله چارچوبي را بر مبنای برنامهریزی دینامیکی و تئوری بازی برای برنامهریزی توسعه تولید منابع انرژی گسترده از دیدگاه سرمایهگذار ارائه میدهد. در چارچوب ارائهشده، جنبهها و ویژگیهای مختلف برنامهریزی این منابع از جمله عدم قطعیت، ریسک و سایر خصوصیات آنها مورد توجه قرار گرفته است. در این مطالعه منابع بادی، گازی و برنامههای پاسخگویی بار به عنوان منابع انرژی گسترده در نظر گرفته شدهاند. عدم قطعیتهای منابع بادی و برنامههای پاسخگویی بار سبب میشود تا سرمایهگذاران این منابع دچار ریسک گردند و برای چیرهشدن بر این مشکلات مدل اصلاحشدهای ارائه شده تا اثرات مداخلات سیاستگذار را بر توسعه منابع بادی و برنامههای پاسخگویی بار ارزیابی نماید. اين كار با بهرهگيري از برنامهريزي ديناميكي انجام پذيرفته و در هر مرحله از اين برنامهریزی، تعادل نش با استفاده از مدل کارنو محاسبه شده است. مدل ارائهشده عدم قطعیت ذاتی در تولید منابع بادی، برنامههای پاسخگویی بار و عدم قطعیت در قیمت برق و سوخت را پوشش داده و میتواند حالت بهينه سرمایهگذاری در اين منابع را ارائه نماید. برای نشاندادن مؤثربودن روش پیشنهادی، این روش بر روی یک شبکه نمونه اجرا شده است.
This paper proposes a comprehensive framework for distributed energy resource (DER) expansion planning from investors’ viewpoint based on a combination of dynamic programming algorithm and game theory. In this framework, different aspects of DER planning i.e. their uncertainties, risks, pollution, etc. are included. Wind turbines, gas engines and demand response (DR) programs are considered as DERs in this study. The intermittent nature and uncertainty of wind power generation and also uncertainty of demand response programs will cause the investors to consider risk in their investment decisions. In order to overcome this problem, a modified model has been derived to study the regulatory intervention impacts on wind expansion planning and implementing DR programs. Dynamic programming method is utilized for this problem solving and in each step, the Nash equilibrium point is calculated using Cournot model. A model based on intermittent nature of wind power generation and uncertainties of DR programs is developed which can calculate the optimal investment strategies. The effectiveness of the proposed model is proved through implementing on a test system.
[1] A. Zangeneh, S. Jadid, and A. Rahimi - Kian, "A hierarchical decision making model for the prioritization of distributed generation technologies: a case study for Iran," Energy Policy, vol. 37, no. 12, pp. 5752-5763, Dec. 2009.
[2] G. Carpinelli, G. Celli, and A. Russo, "Embedded generation planning under uncertainty including power quality issues," European Trans. Electrical Power, vol. 13, no. 6, pp. 381-89, Nov./Dec. 2003.
[3] G. W. Ault, C. E. T. Foote, and J. R. McDonald, "Distribution system planning in focus," IEEE Power Eng. Rev., vol. 22, no. 1, pp. 60-62, Jan. 2002.
[4] G. W. Ault, J. R. McDonald, and G. M. Burt, "Strategic analysis framework for evaluating distributed generation and utility strategies," IEE Proceedings Generation, Trans. and Dist., vol. 150, no. 4, pp. 475-481, Jul. 2003.
[5] H. Falaghi and M. R. Haghifam, "ACO based algorithm for distributed generation sources allocation and sizing in distributed systems," in Proc. IEEE Power Tech, pp. 555-560, Lausanne, Switzerland, 1-5 Jul. 2007.
[6] A. Soroudi and M. Ehsan, "A distribution network expansion planning model considering distributed generation options and techo - economical issues," Energy, vol. 35, no. 8, pp. 3364-3374, Aug. 2011.
[7] S. Haffner, L. F. A. Pereira, L. A. Pereira, and L. Barreto, "Multistage model for distribution expansion planning with distributed generation - Part I: problem formulation," IEEE Trans. Power Delivery, vol. 23, no. 2, pp. 915-923, Apr. 2008.
[8] G. Celli, E. Ghiani, S. Mocci, and F. Pilo, "A multiobjective evolutionary algorithm for the sizing and siting of distributed generation," IEEE Trans. Power System, vol. 20, no. 2, pp. 750-757, May 2005.
[9] S. Ganguly, N. C. Sahoo, and D. Das, "A novel multi - objective PSO for electrical distribution system planning incorporating distributed generation," Energy System, vol. 1, no. 3, pp. 291-337, 2010.
[10] A. P. Agalgaonkar, S. V. Kulkarni, and S. A. Khaparde, "Evaluation of configuration plans for DGs in developing countries using tradeoff analysis and MADM," IEEE/ PES Transmission and Distribution Conf. and Exhibition, pp. 275-285, 21-24 May 2006.
[11] G. A. A. Brigatto, C. C. B. Carmargo, and E. T. Sica, "Multiobjective optimization of distributed generation portfolio insertion strategies," in Proc. of IEEE/PES Transmission and Distribution Conf. and Exposition, pp. 622-628, 8-10 Nov. 2010.
[12] W. El - Khattam, K. Bhattacharya, Y. Hegazy, and M. M. A. Salama, "Optimal investment planning for distributed generation in a competitive electricity market," IEEE Trans. Power Systems, vol. 19, no. 3, pp. 1674-1684, Aug. 2004.
[13] R. Dugan, E. McDermott, and G. Ball, "Distribution planning for distributed generation," in Proc. of Rural Electric Power Conf., pp. C4/1-C4/7, 7-9 May 2000.
[14] A. Zangeneh, S. Jadid, and A. Rahimi - Kian, "Uncertainty based distributed generation expansion planning in electricity markets," Electrical Engineering, vol. 91, no. 7, pp. 369-382, Mar. 2010.
[15] A. Zangeneh, S. Jadid, and A. Rahimi - Kian, "Promotion strategy of clean technologies in distributed generation expansion planning," Renewable Energy, vol. 34, no. 12, pp. 2765-2773, Dec. 2009.
[16] A. Zangeneh and S. Jadid, "Fuzzy multiobjective model for distributed generation expansion planning in uncertain environment," European Trans. Electrical Power, vol. 21, no. 1, pp. 129-141, Jan. 2011.
[17] R. Karki, "Renewable energy credit driven wind power growth for system reliability," Electr. Power Syst. Res., vol. 77, no. 7, pp. 797-803, May 2007.
[18] M. Behrang Rad, M. Parsa Moghadam, and M. K. Sheikh-El-Eslami, "Fuzzy evaluation of energy efficiency improvement impact on load shape," Proc. IEEE Power Tech, pp. 1429-1434, Lausanne, Switzerland, 1-5 Jul. 2007.
[19] F. Olsina, F. Garces, and H. J. Haubrich, "Modeling long-term dynamics of electricity markets," Energy Policy, vol. 34, no. 12, pp. 1411-1433, 2006.
[20] A. Piccolo and P. Siano, "Evaluating the impact of network investment deferral on distributed generation expansion," IEEE Trans. Power Systems, vol. 24, no. 3, pp. 1559-1567, Aug. 2009.
[21] L. Singh and J. S. Dhillon, "Best weight pattern evaluation based security constrained power dispatch algorithm," J. of Systems Science and Systems Engineering, vol. 16, no. 3, pp. 287-307, Sep. 2007.
[22] C. Goldman, N. Hopper, R. Bharvirkar, B. Neenan, and P. Cappers, "Estimating demand response market potential among large commercial and industrial customers: a scoping study," Ernest Orlando Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, 2007.
[23] H. A. Aalami, M. Parsa Moghaddam, and G. R. Yousefi, "Demand response modeling considering interruptible/curtailable loads and capacity market programs," Applied Energy, vol. 87, no. 1, pp. 243-250, Jan. 2010.
[24] R. Earle, E. P. Kahn, and E. Macan, "Measuring the capacity impacts of demand response," The Electricity J., vol. 22, no. 6, pp. 47-58, 2009.
[25] A. Abdollahi, M. Parsa Moghaddam, M. Rashidinejad, and M. K. Sheikh-El-Eslami, "Investigation of economic and environmental - driven demand response measures incorporating UC," IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 12-25, Mar. 2012.