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4. Association Rules

5. Artificial Neural Networks

6. Multi-Layer Perceptron

7. Signal to Noise Ratio

8. Sequential Forward Selection

9. Probabilistic Neural Network

10 . Synthetic Minority Over-Sampling Technique

11 . Artificial Immune Recognition System
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/*X= set of training examples */

/*B= number of nearest neighbors to compute*/
/*L= number of instances in minority class*/
For £:=1to L do

halbali e

a. For each instance x, with minority class label y, (x,y,) Find B
nearest instances to x, (Hit set) by Jaccard index
b. 1. For majority class (¢ # ;)
b. 2. Find B nearest instances to x, from majority class
(Miss set) by Jaccard index
b.3. End for (line ¥.b.y)
c. Calculate the weight of each instance x;:

wt:Z?‘B Z 8<X1’Xj)_$ Z 8(x0x;)

CEY, (xj,yj)EMiss (xi,yi)EHil
5. End for (line ¥)

Sort the weight array w,descending.

7. For the minority class ¢, perform over-sampling by replicating 50%
of the more weighted instances in order to the number of instances in
both classes is equal.

8. End
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